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Chapter 1: INTRODUCTION

The examples in this manual can be made in a full licensed as well as in a try-out or student version of SCIA
Engineer.

Here follows an overview of the required SCIA Engineer modules / editions, per subject:

- Eigen frequency calculations
Esas.21 (Dynamics (natural frequencies) — Frames) Professional edition
Esas.22 (Dynamics (natural frequencies) — Surfaces) Professional edition

- Advanced dynamic calculations
Esas.23 (Dynamics (advanced) — Frames) Professional edition
Esas.24 (Dynamics (advanced) — Surfaces) Professional edition

- Non uniform damping characteristics
Esas.25 (Non uniform damping — Frames) Not part of an edition

Dynamic calculations are not so frequent in civil engineering as static calculations. On the other hand, they
are inevitable in certain projects. Wind effects on high-rise structures, transverse vibration of towers and
chimneys, structures located in seismic regions,...

SCIA Engineer contains specialized modules covering common dynamics-related issues. In this course, the
different aspects of these modules are regarded in detail.

First, the foundation of dynamic calculations is examined: the eigen frequency calculation. Eigen frequencies
form the basis for all types of dynamic analysis.

In one of the last chapters, the eigen frequency calculation is extended with harmonic loads: the influence of
for example vibrations due to machinery, can be calculated using these principles.

Two chapters are devoted to seismic calculations and the influence of damping on the seismic action.

All chapters are illustrated with examples. The relatively easy examples have been purposefully chosen to
provide a clear understanding of what actually happens in the dynamic calculations. To this end, nearly all
calculations have been verified by manual calculations to give a good insight into the application of the theory
in SCIA Engineer.

When the principles are clearly understood, they can be applied to more complex structures without difficulties.

'! Functionalities from chapters 2 to 9 are available on the 64 bits version of SCIA
Engineer.
7 But, for the moment, functionalities from chapters 10 to 12 are only available on the 32
bits version.
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Chapter 2: FREE VIBRATION - EIGEN FREQUENCIES

In this chapter, the calculation of eigen frequencies in SCIA Engineer is explained in detail.

Eigen frequencies can be required to verify comfort criteria for buildings, to analyse wind-induced resonance
for bridges, to check requirements for sensitive equipment,...

First, the theory behind the calculation is discussed and illustrated with an example. The procedure is then

used for both frame and slab structures. The results of all examples are compared with manual calculations to
provide a clear understanding of the applied principles.

2.1 Theory

To understand what is going on during the dynamic analysis of a complex structure with frames or finite
elements, the free vibration of a SDOF (Single Degree Of Freedom) system is regarded in detail. A complete
overview can be found in reference [1].

Consider the following system:

A body of mass m is free to move in one direction. A spring of constant stiffness k, which is fixed at one end,
is attached at the other end to the body.

The equation of motion can be written as:
m.y(t) +kyt)=0 (2.1)

A solution for this differential equation is:
y(t) = A.cos (wt)

Inserting this in (2.1) gives:
(-m.w? + k).A. cos(wt) =0 (2.2)

This implies that:

k
w= |—
m
(2.3)
Where w is called the natural circular frequency.
The natural period T can be written as:
_ 21
N w
(2.4)
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The natural frequency (or eigen frequency) f can be written as:
f= 1 w
T T 2m
(2.5)

For a general, MDOF (Multiple Degree Of Freedom) structure, equation (2.1) can be written in matrix notation:
M.U+KU=0 (2.6)

Where:
U is the vector of translations and rotations in nodes,
U is the vector of corresponding accelerations,
K is the stiffness matrix assembled during the dynamic calculation,
M is the mass matrix assembled during the dynamic calculation.

From this equation, it is clear that the calculation model created for a static analysis needs to be completed
with additional data: masses.
The solutions of (2.6) are harmonic functions in time. A possible solution can have the following form:

U= &.sin (w. (T —Ty) (2.7)

Notice that in this solution, a separation of variables is obtained:
- The first part, (®), is a function of spatial co-ordinates,
- The second part, sin (w. (T — Ty), is a function of time.
When substituting (2.7) in (2.6), an equation is obtained which is known as the Generalized Eigenproblem
Equation :
K®—w2Mo&=0 (2.8)

The solution of (2.8) yields as many eigenmodes as there are equations.
Each eigenmode consists of 2 parts:
- An eigenvalue: value w;
- An eigenvector: vector ®;, which is not fully determined. The deformation shape is known, but the
scale factor is unknown.

This scale factor can be chosen in different ways. In the next paragraph this will be explained further.

An overview of the mathematical (matrix) approach behind the calculation of eigenvalues and eigenvectors
can be found in reference [25].

2.2 Eigen Frequencies in SCIA Engineer

In SCIA Engineer, as scale factor, a M-orthonormalisation has been implemented. This is shown in the
following relation:
oI Mo, =1 (2.9)

Some of the characteristics of M-orthonormalisation are :
O . M.® =0 quandi#j (2.10)
LK d; = w? (2.11)

The M-matrix (the mass matrix) can be computed in different ways. SCIA Engineer uses the so-called lumped
mass matrix representation of the M-matrix. The lumped mass matrix offers considerable advantages with
respect to memory use and computational effort because in this case the M-matrix is a diagonal matrix. The
masses are thus guided to the nodes of the Finite Element mesh

This principle is illustrated on the following figure [28]:
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The calculation of eigenmodes and eigen frequencies is thus made on a discretised finite element model of
the structure. This means that instead of a general structure with an infinite number of degrees of freedom, a
calculation model with a finite number of degrees of freedom is analysed.

The number of degrees of freedom can generally be determined by a simple multiplication: the number of
mesh nodes is multiplied by the number of possible displacements in the node.

It is important to know that the accuracy of the model is in proportion to the "precision of discretisation”, i.e.
to the number of elements of the finite element mesh. This refinement has almost no practical meaning in
static calculations. However, for dynamic and non-linear analyses, it significantly affects the accuracy of the
results.

Consider the following example. A beam on two supports is loaded by its self-weight. By default (for a static
calculation) there is only one finite element for the beam. Taking the above into account, the mass M of the
beam will be guided to the two end nodes of the beam since these correspond with the mesh nodes of the
finite element mesh.

M/2 M/2

gFT Syt iy

/S A

In this case, this means that the entire mass will be located in the supports so no mass can go into vibration
and the dynamic calculation cannot be executed. As indicated, a mesh refinement is required here to attain
results.

The following diagram shows the required steps to perform a Free Vibration calculation:

Activate the Dynamics functionality

v

Create a mass group

/\

Input masses Generate masses from static load cases

o~ -

Create a mass combination

!

Refine the Finite-Element mesh if required

!

Specify the number of eigenmodes to be calculated

!

Perform a free vibration calculation
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The analogy between a static and dynamic calculation is clear:

- In a static calculation, Loads are grouped in Load cases and the Load cases are used in Combinations .
- In a dynamic calculation Masses are grouped in Mass Groups and the Mass Groups are used in Mass
Combinations .

The required steps from this diagram are illustrated in the following example.

Example_02-1.esa

In this example, a beam on two supports is modelled. The beam has a cross-section type IPE 200, a length
of 6m and is manufactured in S235 according to EC-EN. A node has been added to the middle of the beam,
which will make it possible to add a nodal mass in that location.

| 6000 |

IPE20Q
==

JAN /N

Only one static load case is created: the self-weight of the beam.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in
the Project Data .

Project data X

Basic data Functionality Actions UnitSet Protection

GENERAL DETAILED
Property modifiers 4 Dynamics
Model modifiers Modal & harmonic analysis
Parametric input Seismic spectral analysis
Climatic loads Dynamic time-history analysis
Mobile loads 4 Subsoil
Dynamics E Pad foundation check
Stability 4 Steel
Nonlinearity Fire resistance checks
Structural model Steel connections
IFC properties Scaffolding
Prestressing
Bridge design
Construction stages

OK Cancel
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When this is done, a new menu, « Dynamics » will appear in the main menu “Library”:

® 1
£ layers
2 Materials Ctrl+M
I:I Cross sections Ctrl+)

Picture gallery
Paperspace gallery

Load cases, combinations >

Loads >

Dynamics » S Mass groups

Structure and analysis > j Combination of mass groups
Tools >

Steel >

Subsoil and foundation >

Drawing tools >

And also in the input panel:

INPUT PANEL &  Dynamics

= All categories - 0 All tags

Step 2: mass group

The second step is to create a Mass group .

B EENFE a2 O @@ A v Y
MG1 Name MG1
Description
Bound to load case Yes v
Load case LC1-Self weight S72 oo

Keep masses up-to-date with loads

Actions
Create masses from load case >>>
Delete all masses >>>

New Insert Edit Delete Close

As indicated in the diagram, a Mass Group is used to group masses in a same way a Load Case is used to
group Loads. When a Mass Group is defined, masses can be inputted.

SCIA Engineer also allows the user to create masses from a static load case.

When for example a roof weight is inputted as line loads, the action “Create masses from load case”  will
automatically generate masses from these line loads. It is clear that this provides a quick input of necessary
data. When the option “Keep masses up-to-data with loads” s ticked on, then the action to create masses
will create masses which remain linked to the loads of the load case. The amount of mass in a ‘linked’ mass
is updated each time you click on the action button “Create masses from load case” or each time you perform
a calculation.

MJA — 2024/02/29 11
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Notes:

- The self-weight of a structure is always taken into account automatically for a dynamic calculation.
Even if there is no mass group linked to self weight. The mass of the self-weight is not displayed.

- When specifying a load case but not using the action ‘Create masses from load case’ nothing will
happen: no masses will be created.

- When creating masses from loads, SCIA Engineer will use the acceleration of gravity specified on the
Loads tab of the Project Data . By default this value is 9,81 m/s2,

- The mass remains unchanged after any modification or deletion of the original force. If the mass is
intended to correspond to the new force, it is necessary to delete the mass and create it again.

- The mass is generated only from vertical force components.

- Free loads cannot be converted into masses.

Step 3: masses
When Mass Groups are created, Masses can be inputted on the structure. SCIA Engineer allows the input of:
- Mass in node

- Point mass on beam
- Line masse on beam

INPUT PANEL #& Al workstations
= Masses 0 All tags
- Surface mass
- Line mass on surface edge
- Point mass on surface edge
INPUT PANEL #&  All workstations
= Masses 0 All tags

X EAN X

In this example, a mass of 500 kg will be inputted on the middle node of the beam using “Mass in node” .

¥ " Mass in node X

Name MN1
M[kg] 500.00
Koeff mx 1
Koeff my 1
Koeff mz 1
Imx [kgm*2] 0.00

/ Imy [kgm*2] 0.00
Imz [kgm*2] 0.00

OK Cancel

The parameters Koeff mx, Koéff my .and Koeff mz specify how much of the mass will participate in the
vibration according to the global X, Y or Z axis.
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This can be used when calculating for example a chimney: when Koeff mx is put on 1 and Koeff my and
Koeff mz are taken 0, then the mass can only vibrate in the global X-direction so only eigenmodes in that
direction will be obtained.

Imx, Imy and Imz specify the moment of inertia around the global X, Y or Z axis. By default a nodal mass is
concentrated so it has no inertia. When the mass represents a large machine, it is possible to input the moment
of inertia of this machine.

The nodal mass of 500 kg is inputted on the middle node of the beam:

MNT. # 500.00

Notes:
- To display masses and mass labels, make a right click on the screen and go to + « Set view

parameters for all », and tab « Loads / Masses ».
- Masses are Additional Data , which can be moved / copied to other entities.

Step 4: mass matrix

Next, the Mass groups can be combined within a Combination of Mass Groups
This is actually the mass matrix M which has been mentioned in the beginning of this chapter.

B " Combinations of mass groups X
= &M E &2 [ nputcombinations vY
CM1 Name CM1

Description
4 Contents of combination
MG1 [] 1.000

New Insert Edit Delete Close

The Combination of Mass Groups works in the same way as a linear Load Combination.
A multiplication coefficient can be inputted for each Mass Group. This coefficient can be used when the mass

of a structure changes during its lifetime. Consider for example a water tank. One Combination of Mass Groups
can be created with a coefficient 1,00 to specify a full tank and another Combination of Mass Groups can be
created with a coefficient 0,50 to specify a tank, which is half-full. In this way, both cases can be calculated in
one time. As stated in step 2: the self-weight is automatically taken into account for each Combination of Mass
Groups.
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Step 5: mesh setup

After executing the previous steps, the calculation can already be started. However, as stated previously it can
be required to refine the finite element mesh.
This can be done though the main menu Tools / Calculation & Mesh / Mesh settings

¥ Mesh setup X

Name MeshSetupl

( Average number of 1D mesh elements on straight 1D members 1 ]

Average size of 1D mesh element on curved 1D members [m] 0.200
[ Average size of 2D mesh element [m] 1.000 ]

Connect members/nodes

Setup for connection of structural entities

4 Advanced mesh settings

4 General mesh settings
Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Manual v
Average size of panel element [m] 1.000
Elastic mesh
Use automatic mesh refinement

4 1D elements

| Average size of 2D mesh element

& 3{ OK Cancel

For 1D members (beams) the Average number of tiles of 1D element  can be augmented. In general, 5 to
10 tiles are sufficient for a dynamic calculation. When specifying a too high amount, the calculation will take a
long time to complete. For 2D elements (plates & shells) the Average size of 2D element needs to be altered.

In this example, due to the inserting of the middle node, there is already a mesh node there, so it is not required
to have a denser Finite Element Mesh. This can be seen after mesh generation :

SCIA Engineer: End of analysis X

Preparation for mesh generation: OK
Preparation of calculation settings: OK

Mesh generation: OK

Number of nodes: 3
Number of 2D elements: 0
Number of 1D elements: 2

A | - : A

Note: To display the numbering of finite elements, make a right click on the screen + « Set view parameters
for all »:

- Tab « Structure », in « Mesh », and tick « Draw mesh » on.

- Tab « Labels », in « Mesh », tick « Display label & Elements 1D » on.
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Step 6: solver setup

Another important step before launching the calculation is to specify the amount of eigenmodes that need to
be calculated and with which method they can be calculated.
This can be done through the main menu Tools / Calculation & Mesh / Solver settings

4
4
4
4

4

4
4

[ 12)

Solver setup

Name SolverSetupl

Specify load cases for linear calculation
Specify combinations for linear stability calculation
Specify combinations for nonlinear stability calculation
Advanced solver settings
General
Effective width of plate ribs
Nonlinearity
Initial stress
Initial stress

Dynamics

[ Type of eigen value solver

Number of eigenmodes

Lanczos
1

Modal mass matrix
Use IRS (Improved Reduced System) method
P Mass components in analysis
Linear stability
Nonlinear stability

O )
al [al

Diagonal

OK Cancel

By default, the Lanczos method is used. This method is set as default even in older projects where originally
another method was used. In comparison with older methods, the Lanczos method is faster and more stable.
As explained above, the number of eigen frequencies is dependent of the number of degrees of freedom of
the structure which are on their turn dependent of the discretisation.

In this example, only the mesh node located in the middle of the beam can vibrate vertically. Therefore only
one eigenmode needs to be calculated. The Number of Frequencies can thus be lowered to 1.

The modal mass matrix can be Diagonal or Consistent .
In the first case (diagonal matrix), masses are affected to nodes. The matrix contains only components in

diagonal and in translation (not in rotation). This method is faster but less precise.

In the second case (consistent matrix), masses are distributed along the element with shape functions. The
matrix contains components in translation (but no in diagonal) and also in rotation. This method is more precise
but can lead to a more important calculation time.

Diagonal matrix

Consistent matrix

The option “Use IRS (Improved Reduced System) method” requires floors to be defined first, so this option
cannot be used now. “Produce wall eigenmode results (needed for ECtools)” is only used if you are using the
extra program ECtools to analyse seismic effects in masonry.

MJA — 2024/02/29
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Note: When the number of frequencies is higher than the amount of degrees of freedom, a message will appear
during the calculation, stating the calculation cannot be executed. The solution is to lower the number of
frequencies to be calculated or to apply a mesh refinement so more degrees of freedom are created.

B8 CALCULATION PROCESS

‘ Calculation | € Results

Calculation failed

Too many eigenvalues wanted. Selected type of
eigenvalue solver is not able to calculate this model,
or number of eigenmodes is higher than the number
Name of degrees of freedom. Please try another eigenvalue
solution method in the solver settings
1 P Mesh calculation (recommended polynomial), or reduce the requested

number of eigenmodes in solver settings.

1 ¥ Modal analysis

® (M1 €) Too many eigenvalues wanted. Selected type of ei...

Step 7: modal analysis

The last step is to perform the Modal Analysis calculation through the main menu Tools / Calculation &
Mesh / Calculate.

8 FE analysis X

Calculations 4 Mesh setup

Average number of 1D mesh elements« 1
Linear analysis

Average size of 1D mesh element on cu 0.200
Load cases: 1

Modalaratysi Average size of 2D mesh element [m] 1.000
v analysis

= Eigenmodes: 1 Connect members/nodes
Setup for connection of structural entit

Other processes
P Advanced mesh settings

Save project after analysis b Solver setup
4 Advanced solver settings
P General
P Initial stress
4 Dynamics
Type of eigen value solver Lanczos Y
Number of eigenmodes 1
Modal mass matrix Diagonal v
Use IRS (Improved Reduced System) n
P Mass components in analysis
P Soil

Calculate

After performing the calculation, the option Eigen Frequencies becomes available on the “Results”
workstation:

B & & Sa D WG o F & i

The preview shows the following result;
Eigen frequencies

Mass combination : CM1
1 [6.32 [39.69 [1575.58 | 0.16

16 MJA — 2024/02/29



Step 8: calculation protocol

According to this calculation, the natural frequency of the first mode is shown to be 6,32Hz.
To view the results in more detail, it is possible to look at the Calculation protocol for the Eigen Frequency
calculation:

by
) ) .
B & S a DR m o & & &
iy
-
| = RESULTS (1) N X

Name Calculation protocol

Type Eigen frequency v
Include list of assumptions E
ACTIONS >»
Calculation protocol
Solution of Free vibration
Number of 2D elements 0
Number of 1D elements 2
Number of mesh nodes 3
Number of equations 18
Combination of mass groups | CM1
Modification group None
Number of frequencies 1
Method Lanczos
Bending theory Mindlin
Type of analysis model Standard
Modal mass matrix Diagonal

Sum of masses

Mass type X h ¢ z

[kg] [kg] [kg]
CM1 | Moving mass 56712 | 634.23| 567.12
|cM1 | Total mass | 634.23] 634.23| 634.23]

Relative modal masses

Tz Wu/Wae Wy/Wyee Wa/Wae ur/Waat viz/Wyot zr/Waa

1] 33.6%47 0.16 6.32 0.0000 0.0000 | -23.8142 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
l | | | | | | | o00000] 00000| 1.0000]| 0.0000| 0.0000] 0.0000 |

Let's see more in detail about the results in the calculation protocol.
Solution of the free vibration:

- The model was divided in 2 finite elements , resulting in 3 mesh nodes .

- Each node has 6 degrees of freedom (X, Y, Z, RX, Ry, Rz) resulting in 18 equations .
- The combination of mass groups for the results was CM1.

- The number of frequencies set in the solver settings is 1.

- The Lanczos method was used to perform this calculation.

The Sum of masses shows the amount of mass, which can vibrate for this Combination of Mass Groups
(CM1). In this example, this is governed by the mass of 500 kg and the mass of the beam.

MJA — 2024/02/29 17



Advanced Training — Dynamics

The mass of the beam can be calculated as follows:
- The beam is an IPE 200 with cross-section A= 0,00285 m?2
- The length of the beam is 6 m

- The volumetric mass of S 235 is 7850 kg/m83.
M = 0,00285 m2 * 7850 kg/m3 = 22,3725 kg/m

Now to find the total mass, we must assign the masses to the mesh nodes and take into account the vibrations
which are possible:

- For node 1: 1,5m * 22,3725 kg/m = 33,5587 kg
(1/4 of the beam mass goes to the left node)

- For node 2: 3,0 m * 22,3725 kg/m + 500 kg = 67,1175 kg + 500 kg = 567,1175 kg
(1/2 of the beam mass goes to the middle node along with the nodal mass in the node)

- For node 3: 1,5m* 22,3725 kg/m = 33,55875 kg
(1/4 of the beam mass goes to the right node)

[

N A

Direction X Direction Y Direction Z

Node 1 Fixed (Frame X2) Fixed
Node 2 567,1175 kg (Frame X2) 567,1175 kg
Node 3 Fixed (Frame X2) Fixed
Total 634,2349 kg X 634,2349 kg
Calculation Protocol 634,23 kg 0 kg 634,23 kg

As you can see, the sum of masses in the calculation protocol corresponds to the sum of masses in all mesh
nodes, taking into account the degrees of freedom in each node.

It is clear that a denser mesh will provide a more accurate participation of the beam mass.

The Modal Participation Factors show the amount of mass that is vibrating in a specific eigenmode as a
percentage of the total mass. In this example Wzi/Wztwt is equal to 1 which means that 100% of the mass is
vibrating in the vertical direction for the first eigenmode. This means that in the other degrees of freedom, no
mass will be displaced in the Z-direction.

The Wyi_r/Wiytot r is equal to 1 means that this first eigenmode the only eigenmode in which mass can rotate
around the global Y-axis.

As a side note, we must indicate that these results will strongly alter once we use a finer mesh. Since more

nodes will add more degrees of freedom and thus more possible eigenmodes.
These factors will be looked upon in more detail during the Seismic calculations.
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Step 9: displacement of nodes

The eigenmode can be visualized through Displacement of nodes

L
= RESULTS (1) (AP
Name Displacement of nodes o
¥ SELECTION
Type of selection  All v
Filter No v

¥ RESULT CASE

Typeof load Mass combinations v

Mass combination CM1/1-6.32 v
Extreme Global v

Values U_z v

¥ DRAWING SETUP
Display value (;:7
Display unit (\{f
Display value name CD

Envelopes drawing 0 to extreme v

ACTIONS >»
Refresh F5

- « Selection » = All

- « Type of loads » = Mass combinations

- For each eigenmode, a specific mass combination can now be shown.
- « Value » = U, to view the displacement of nodes.

Wat

2 sty 2OOn*"P

-42.0mm

Displacement of nodes

Modal shapes are normalzed, so that the generalzed modal mass of each mode s equal to 1ka.
Mass combination: CM1/1 - 6.32

Extreme: Global
Selection: Al
Name Case Ux Uz Dy U toe
[mm] [mm] [mrad] [mm]
N1 CM1/1 - 6.32 0.0 0.0 20.7 0.0
N3 CM1/1 - 6.32 00| -42.0 00| 420
N2 CM1/1 - 6.32 0.0 0.0 -20.7 0.0

The result is as expected, the inner node is vibrating. A denser mesh will provide a much better representation
of the Eigenmode. It is important to bear in mind that a vibration is in two directions : in this case the
eigenmode is shown moving up, however half a period later it will be moving down.

Free vibration gives only the conception of structure properties and allows predicting the behaviour of the

structure under time varying load conditions. In nature, each body prefers to remain in a standstill. If forced to
move, it prefers the way requiring minimal energy consumption. These ways of motion are the eigenmodes.
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The eigenmodes do not represent the actual deformation of the structure. They only show deformation that is
"natural" for the structure . This is why the magnitudes of calculated displacements are dimensionless
numbers. The numbers provided are ortho-normed, i.e. they have a particular relation to the masses in the
structure. The absolute value of the individual numbers is not important. What matters is their mutual
proportion.

The vibration of the structure can be shown through by the main menu Result > Animation .
Activating the option « Symmetry » will show the actual vibration in both directions.

=) Animaticx (m] X

B ) ‘6‘ B Frames per second : 100 Mode of calculation : Linear v

Plav time (s) : 1

- Displacement of nodes
Values: Uz
Modal shapes are normalized, so that
the generalized modal mass of each
mode is equal
to 1kg.
Mass combination: CM1/1 - 6.32
Extreme: Global
Selection: All

> -42.0mm

IRERRAL T

Close

Note: using CTRL + right mouse button, the structure can be rotated in the “Animation” window.

Manual calculation

In order to check the results of SCIA Engineer, the eigen frequency of this structure is calculated by a manual
calculation.
Following reference [1], the circular frequency of a beam on two supports with a mass in the middle can be

calculated as follows:
2 _

w" = 48@
With:
circular frequency
modulus of Young
moment of inertia of the beam
length of the beam
mass in the middle of the beam

TC-Tme

In this example:
E = 210000 N/mm?2
ly = 19430000 mm+*
L =6000 m
M =500 kg
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So we have:
2 _ 48 % 210000 N/mmz * 19430000mm*
500kg * (6000mm)3

® = 1813,4772d"/

w = 42,58Tad/

w
f=—=6,78Hz
2T

The result calculated by SCIA Engineer was 6,32 Hz.

The difference in results is caused by two assumptions in the manual calculation:

- The manual calculation does not take into account the self-weight of the beam.
Since w = /k/m, a lower mass will lead to a higher w and a higher f.

- The manual calculation does not take into account shear deformation.
A lower deformation leads to a higher stiffness k, a higher w and a higher f.

These two assumptions can also be implemented in the calculation model of SCIA Engineer:
- Inorder not to take the self-weight into account, the volumetric mass of S 235 can be set to 1 kg/m?3 in
the material library:

B ' Materials X
HiEGIFE «» O =@ A vy
S$235 Name S235

4 Code independent
Material type Steel
Thermal expansion [m/mK] 0.01e-003
( Unit mass [kg/m*3] 1.00 ]
E modulus [MPa] 2.1000e+05

Poisson coeff. 0.3
Independent G modulus
G modulus [MPa] 8.0769e+04
Log. decrement (non-uniform dz 0.15
Cotour I
Thermal expansion (for fire resis 0.01€-003
Specific heat [J/gK] 6.0000e-01
Thermal conductivity [W/mK] 4.5000e+01
Price per unit [€/kg] 1.00
4 EC3
Ultimate strength [MPa] 360.0
Yield strength [MPa] 235.0

Thickness range
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- To neglect the shear deformation, activate this option through the menu Tools / Calculation & Mesh
/ Solver settings :

B " Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
4 General
Neglect shear force deformation ( Ay, Az>>A)
Neglect shear center eccentricity
Type of solver Direct v
Minimal number of sections on member 10
| Warning when maximal translation is greater than [mm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
P Initial stress
P Dynamics

| P Sail

B g‘ ‘Qf OK Cancel

- To obtain a correct and precise result, the mesh must also be refined to 10 finite elements. This can
be done through the main menu Tools / Calculation & Mesh / Mesh settings

8" Mesh setup X

Name MeshSetupl
[ Average number of 1D mesh elements on straight 1D members 10 ]

Average size of 1D mesh element on curved 1D members [m] 0.200
Average size of 2D mesh element [m] 1.000
Connect members/nodes
Setup for connection of structural entities

4 Advanced mec<h cettinos

Now when the calculation is performed again, the following results are obtained :
Eigen frequencies

Mass combination : CM1
1 |e78  [4258 |1813.32 |o0.15

These results correspond exactly to the manual calculation.

This example clearly shows the importance of checking the assumptions behind the applied theories. When
comparing results between two calculations, always make sure the same assumptions/hypotheses are used.
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2.3 Frames

In this paragraph, the Free Vibration calculation is illustrated for frame structures. The principles of the theory

are applied in detail and verified by means of manual calculations.

Example 02-2.esa

5000

In this example, a two-storey frame is modelled. The members 3
have cross-section HE240A and are manufactured in S 235
according to EC-EN.

4000
HEAZ240

The height of each storey is 4 m.
The width of the frame is 5 m.
The column bases are inputted as fixed supports. N\

HEAZ4D

HEAZ40

HEAZ240

One static load case is created: self-weight .

4000
HEAZ40

On the beams of the floor and roof level, a line mass of 500 kg/m
will be introduced.

Nl

Step 1&2: functionality and mass group

HEAZ240

Vrrrrrrd

The activation of the Dynamics Functionality and the creation of a Mass Group are identical to the previous

example.

Step 3: masses

When the Mass Group is created, the line masses of 500 kg/m can be inputted on the roof and floor beams

of the frame.

# " Line mass on beam

Name LMB3
Distribution Uniform
M [kg/m] 500.00

Koeff mx 1

Koeff my 1
M SN Koeff mz 1

@ 4 Geometry
Extent full

Coord. definition Rela
Position x1 0.000
Position x2 1.000

Origin From start

=

x2

L

OK

MJA — 2024/02/29

Cancel

23



Advanced Training — Dynamics

o
=
32
Iri]

Note: to render the display of masses, go to "Set view parameters for all”

Step 4: mass matrix

500.00

2
2
=
o

Next, a Combination of Mass Groups can be created.

i | Combinations of mass groups

/ « Loads / masses ».

= tEZiFE «2 O

Input combinations

CM1

New Insert Edit Delete

Name CM1

Description

4 Contents of combination

MG1[] 1.00

Close

24
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Step 5: mesh setup

To obtain precise results for the dynamics calculation, the Finite Element Mesh is refined.

This can be done through Calculation & Mesh/ Mesh Settings .

B Mesh setup

Name MeshSetupl

[ Average number of 1D mesh elements on straight 1D members 10

)

Average size of 1D mesh element on curved 1D members [m] 0.200

P 1D elements

Average size of 2D mesh element [m] 1.000
Connect members/nodes

Setup for connection of structural entities

4 Advanced mesh settings
P General mesh settings

(f flld NN

The Average number of tiles of 1D element
the mass of the members.

Step 6: solver setup

is set to 10 to obtain a good distribution of the line masses and

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default

value in the menu Tools / Calculation & Mesh /

Solver Settings is 4. This is sufficient for this example.

" Solver setup

P General
P Initial stress

4 Dynamics

P Soil

Name SolverSetupl

Specify load cases for linear calculation

4 Advanced solver settings

Type of eigen value solver Lanczos

[ Number of eigenmodes 4

)

Modal mass matrix Diagonal

Use IRS (Improved Reduced System) method

P Mass components in analysis

X

(oo Lol FEANEE
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Step 7: modal analysis

The Free Vibration calculation can now be executed through the main menu Tools / Calculation & Mesh /
Calculate.
The following results are obtained:

Eigen frequencies
N f @ w? T

[Hz] [1/s] [1/s%] [s]
Mass combination : CM1
1 2.90 18.25 333.01 0.34

2 9.58 60.22 3626.53 0.10
3 1464 9199 £462.43 0.07
4 17.15 |107.78 |11615.85 0.06

As stated in the previous example, using Deformation of Nodes , the Deformed Mesh can be shown to view
the eigenmodes:

F N-‘I.
—5 -+ IL’\ X +

Eigenmode 1: f = 2,90Hz Eigenmode 2: f = 9,58Hz

7

M

I 1

26

Eigenmode 3: f = 14,64Hz

4

Ly -

Eigenmode 4: f = 17,15Hz
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The Calculation Protocol

Sum of masses

Mass type X

CM1 | Moving mass

[kg]
6543.37

for the Eigen Frequency calculation shows the following:

Y

[kg]
6567.43

z

[ka]
6543.37

[cM1 | Total mass

| s567.45| 6367.43| 6567.43 |

Relative modal masses

Mode iega [rad P?I‘i]od ;;:j. MNa [ ™ [ ) W [Wiace Wyt [Wysce Wai/Waee i [Watce vim/Wyeet zi g/ Wztet
S

1 18.2451 0.34 2.90 75.1282 0.0000 0.0000 0.8626 0.0000 0.0000 0.0000 0.0805 0.0000

2 60.2224 0.10 9.58 | -26.9358 0.0000 0.0000 0.1109 0.0000 0.0000 0.0000 0.4202 0.0000

3 91.9542 0.07 14.64 0.0000 0.0000 | -31.6556 0.0000 0.0000 0.1535 0.0000 0.0000 0.0000

- 107.78 0.06 17.15 0.0000 0.0000 | -55.3291 0.0000 0.0000 0.5379 0.0000 0.0000 0.0000

0.9735 0.0000 0.6515 0.0000 0.5007 0.0000

The Sum of masses shows the amount of mass, which can vibrate for this Mass combination. In this
example, this is governed by the line masses of 500 kg/m and the mass of the members.

This value can be calculated as follows:
- The members are of type HE240A with cross-section A= 0,00768 m?
- The volumetric mass of S 235 is 7850 kg/m?
- The total length of the membersis4x4m+2x5m=26m

However, as stated in 2.2 the masses are guided to the mesh nodes. The Finite Element Mesh was refined
to 10 1D elements per member.
This implies that for the two lower columns, half the mass of a 1D element is guided to a support and does not
take part in the free vibration:

- The length of the columns is 4 m
- Thelength of a 1D elementisde 4 m/10=0,4 m

- The length of half a 1D elementis 0,4 m/2=0,2m

o

o

The mass is added to the line masses of 500 kg/m
Vibrating mass = 2 x 500 kg/m x 5m + 1543,37 kg = 6543,37 kg

o

The Modal Participation Factors
percentage of the total mass.

For Eigenmode 1: 86% of the total mass is vibrating in the X-direction
For Eigenmode 2: 11% of the total mass is vibrating in the X-direction
For Eigenmode 3: 16% of the total mass is vibrating in the Z-direction
For Eigenmode 4: 54% of the total mass is vibrating in the Z-direction

The total length of the members taken into account for the mass is:
26m-02m-0,2m=25,6m
Total member mass = 0,00768 m2 x 25,6 m x 7850 kg/m? = 1543,37 kg

show the amount of mass that is vibrating in a specific eigenmode as a

The lower row shows the total percentage when these four modes are combined: 97% is taken into account
for the X-direction and 69% for the Z-direction.

These factors will be looked upon in more detail during the Seismic calculations in Chapter 4. For a seismic
calculation, it is required that sufficient eigenmodes are included in the calculation so that at least 90% of the
total mass is being taken into account [7].

MJA — 2024/02/29
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Manual calculation

In order to check the results of SCIA Engineer, the lowest eigen frequency, or natural frequency of this
structure is calculated by a manual calculation.

The method used here is described in the literature as Rayleigh’s Energy Method. [1], [13].

In this method, the structure is idealized as a cantilever beam with lumped masses at each floor level:

TTITIT

The structure is then loaded with a set of linearly increasing horizontal loads on each floor level. Due to this
loading, the structure will deform and thus the rigidity of the system is known. The eigen frequency of the
structure can then be approximately calculated as follows:

?=1 Fi' di
Ly M;.d?

(2.8)
With:
n: number of floors
Fi: horizontal force acting on floor level i
di: horizontal deformation of floor level i
Mi: idealized mass of floor level i

The analogy between this formula and w = ,/k/m can clearly be seen.

To use this formula, the frame needs to be idealized to a cantilever:

__——”'/—"
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The mass of the lower part of the structure is idealized to the support of the cantilever so it takes no part in

the vibration.
The mass Mz can be calculated as follows:

0,00768 m2 x (5 + 4 + 4) m x 7850 kg/m3 + 500 kg/m x 5 m = 3283,74 kg

The mass Mz can be calculated as follows:
0,00768 m2 x (5 + 4) m x 7850 kg/m3 + 50 kg/m x 5 m = 3042,59 kg

In order to calculate the horizontal deformations di of each floor level due to a linearly increasing load Fi, a
static load case is calculated with SCIA Engineer consisting of loads of 100 kN and 200 kN. The following

results are obtained for the nodal deformations:

T e e |_x = 197 4 mim

M

IL ;‘_"‘\:}(0 mirm =) _x=0.0mm

0 F1=100kN =100000 N =>d1 = 94,7 mm = 0,0947 m
0 F2=200kN =200000 N =>d2=197,4mm =0,1974 m

Applying formula (2.8):

1 \/ 100000N * 0,0947m + 200000N * 0,1974m

T 2m’ [3283,74kg * (0,0947)2 + 3042,59%g * (0,1974m)2

This result corresponds to the 2,90 Hz calculated by SCIA Engineer.

— e = |_x =947 mm

= 2,88 Hz

MJA — 2024/02/29
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2.4 Combining mass groups

Mass Groups are combined in a Combination of Mass Groups

According to Eurocode 8 [7] article 3.2.4, all gravity loads appearing in the following combination of actions
need to be taken into account for an eigenmode calculation:

D Gt ) Wi Qi
Where:

Gk: characteristic value of the permanent load
Qx,: characteristic value of the variable load i
Y ;: combination coefficient for load i = @. s, ;

(2.9)

The combination coefficient P ; takes into account the likelihood of the variable loads not being present over
the entire structure during the occurrence of an earthquake.

According to Eurocode 8 [7] article 4.2.4, Yg; should be calculated in the following way:

Ugi = @. Uy

NOTE The values to be ascribed to @ for use in a country may be found in its National Annex.
The recommended values for g are listed in Table 4.2.

Table 4.2: Values of ¢ for calculating v,

Type of variable Storey 1]

action

Categories A-C” Roof 1.0
Storeys with correlated occupancies 08
Independently occupied storeys 0.5

Categories D-F

and Archives o

* Categories as defined in EN 1991-1-1:2002.

For example, if a first mass group MG1 represents the mass of permanent loads and a second mass group
MG2 represents the mass of a variable load case with a Category B imposed load and independently occupied

storeys, then ( is taken as 0,5 and s, ; as 0,3.

This gives a value of 0,15 for Y ;.
The Combination of Mass Groups CML1 can then be formulated as 1,00 MG1 + 0,15 MG2.

# " Combinations of mass groups X
= i HE & 2 [ Inputcombinations vY
CM1 Name CM1

Description
4 Contents of combination
MG1 [] 1.000
MG2 [] 0.150

New Insert Edit Delete Close
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Example 02-3.esa

In this example an office building is modelled as a frame. The office is manufactured in C30/37 according to
EC-EN. The building has four storeys with a storey height of 4 m. In horizontal direction, the frame is made up
of four columns with a distance of 6 m between them. In the direction out of plane, the frames are spaced
5 m. The column bases are inputted as fixed supports.

The members of the frame have following cross-sections:
- Columns: Rectangular 300 x 450
- Floor Beams: Rectangular 250 x 500
- Roof Beams: Rectangular 150 x 300

The vertical loads acting on the structure are:
- The self-weight of the concrete members
- The weight of the floors: 5 kN/m?2
- The weight of the roof: 2 kN/m?
- A category B (Office) imposed load of 3 kN/mz?

This gives 3 static load cases:
- LC1: self-weight
- LC2: permanent load: 25 kN/m on the floor beams, 10 kN/m on the roof beams
- LCS: variable load: 15 kN/m on the floor beams
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Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in

the Project Data .

Step 2 & 3: mass groups

The second step is to create Mass Groups , the third step the creation of Masses.

Three Mass Groups are created, one for the dead load and one for each static load case.

For the Mass Group MGZ2, the load case LC2 is chosen: the weight of the floors and roof. Using the action
“Create masses from load case” , you can automatically generate masses from the already inputted loads

which remain linked to the loads.

B " Mass groups

o EEFE &« O @@ A

MG1 Name MG2
MG2 Description
MG3

Bound to load case Yes

Load case Perm_add -Perm_add

Keep masses up-to-date with loads ¢

Actions
Create masses from load case

Delete all masses

New Insert Edit Delete

o>

o>

Close

In the same way, the Mass Group MG2 is created in which masses are automatically created from load case

LC3: the imposed load.

® ° Mass groups X
& iREFE a2 O @B A vY
MG1 Name MG3
MG2 Description
MG3 Bound to load case Yes Ne
Load case LL-LL v
Keep masses up-to-date with loads E|
Actions
Create masses from load case >>>
Delete all masses >>>
New Insert Edit Delete Close

32
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Note:

As stated in the first example: When creating masses from loads, SCIA Engineer will use the acceleration of
gravity specified on the Loads tab of the Project Data . By default it is 9,81 m/s2.

The mass, which has been created from a load case, can be automatically regenerated when the load case is
modified. To link the mass to a load case, you have to activate the option “Keep masses up-to-date with
loads”.

The contain of the two mass groups can be visualized.

Mass group MG2:

1019.37
1019.37
1019.37
1019.37
1019.37
1019.37

LMB12
LME11
LMB10

2548.42
2548.42
2548.42
2548.42
2548.42

oo
==
) (=)
=T
W
ooy

2545.42
25458 .42
2548 .42

Floor mass:
25000 N/, K
M _ 9548478
9,81M/ , 4 %m
S
Roof mass:
10000 N/, K
— M _1019,4%8
9,811/, 4%m
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Mass groups MG3:

1529.05
1529.05
1529.05

LME15

1529.05
1525.05
1528.05

LMET4

1529.05
1529.05
1529.05

LMB13

Mass of imposed load:

15000 N/py

kg
9,81M/, = 15291 %/m

Step 4: mass matrix

Both Mass Groups can now be combined in a Combination of Mass Groups
According to Eurocode 8 [7] article 3.2.4, all gravity loads appearing in the following combination of actions
need to be taken into account for an eigenmode calculation:

Z Gy + Z Vg Qki

(2.9)
With:
Gk: characteristic value of the permanent load
Q«,j: characteristic value of the variable load i
Ygi:  combination coefficient for load i = ¢.,;

The combination coefficient yg; consider the probability that variable loads may not be present on the whole
structure when the earthquake happens.

For this example, with a Category B imposed load and independently occupied storeys, ¢ is taken as 0,5 and
W2, as 0,3. This gives a value of 0,15 for Yk,
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The Combination of Mass Groups CM1 can then be formulated as 1,00 MG1 + 0,15 MGZ2.

‘ # ' Combinations of mass groups X
= fSEZMFE & 2 [ Inputcombinations vY
ML Name CM1
Description

4 Contents of combination
MG1[] 1.000
MG2 [] 1.000
MG3 [-] 0.150

New Insert Edit Delete Close

Step 5: mesh setup

To obtain precise results for the dynamics calculation, the Finite Element Mesh is refined. This can be done
through the main menu Tools / Calculation & Mesh / Mesh settings.

® ' Mesh setup X

Name MeshSetupl

( Average number of 1D mesh elements on straight 1D members 10 )

Average size of 1D mesh element on curved 1D members [m] 0.200
Average size of 2D mesh element [m] 1.000
Connect members/nodes
Setup for connection of structural entities
4 Advanced mesh settings
4 General mesh settings
Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Manual v
Average size of panel element [m] 1.000
Elastic mesh
Use automatic mesh refinement
4 1D elements
Minimal length of beam element [m] 0.100
Maximal length of beam element [m] 1000.000
Average size of tendons, elements on subsoil, nonlinear soil spring [m] 1.000

Generation of nodes in connections of beam elements

PRSIy T PRy S T N Py W R | [ Rt PR YO PR [ SR sl §

A

The Average number of tiles of 1D element s set to 10 to obtain a good distribution of the line masses and
the mass of the members.
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Step 6: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default
value in the main menu Tools / Calculation & Mesh / Solver Settings is 4. This is sufficient for this example.

i Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
Specify combinations for linear stability calculation
Specify combinations for nonlinear stability calculation

4 Advanced solver settings

P General
P Nonlinearity
P Initial stress
4 Dynamics
Type of eigen value solver Lanczos v
L Number of eigenmodes 4 ]
Modal mass matrix Diagonal v

Use IRS (Improved Reduced System) method

P Mass components in analysis

~ s e oeaen

e flld EEEE

Step 7: calculation

The Free Vibration calculation can now be executed through the main menu Tools / Calculation & Mesh /
Calculate.

The following results are obtained:

Eigen frequencies
Mass combination : CM1
1 1.27 7.99 63.80 0.79
2 3.69 23.19 537.79 0.27
3 5.99 37.64 1417.01 0.17
B 8.23 51.73 2676.16 0.12

With corresponding eigenmodes:

|

L
Eox

36

Eigenmode 1: f= 1,27 Hz

Yes

Eigenmode 2: f = 3,69 Hz

MJA — 2024/02/29




M / .= / N
L Lox

Eigenmode 3: f = 5,99 Hz Eigenmode 4: f = 8,23 Hz

Step 8: calculation protocol
The Calculation Protocol for the Eigen Frequency calculation shows the following:

Sum of masses

Mass type X W z

[kg] [kg] [kg]
CM1 | Moving mass 208578.65 | 208848.65 | 208578.65

|cM1 | Total mass | 208848.65| 208848.65| 20884865

Relative modal masses

Mode iega [rad Pil"]d 'l’fel:!l- M ) Tz Wu/Wae Wy/Wee Wa/Wae ur/Weae vr/Wyot 28/ Waa
s, Hz

1 7.96794 0.79 1.27 | 417.2605 0.0000 0.0000 0.8347 0.0000 0.0000 0.0000 0.0549 0.0000
2 23.1909 0.27 3.69 | -142.8630 0.0000 0.0000 0.0979 0.0000 0.0000 0.0000 0.2151 0.0000
3 37.6444 0.17 5.99 | 93.8642 0.0000 0.0000 0.0422 0.0000 0.0000 0.0000 0.0465 0.0000
4 51.7331 0.12 8.23 0.0000 0.0000 15.9525 0.0000 0.0000 0.0019 0.0000 0.0000 0.0000

0.9748 0.0000 0.0015 0.0000 0.3166 0.0000

The Sum of masses can be calculated as follows:
- According to the Bill of Material, the self-weight of the frame, is 40500 kg:

Bill of material
Selection: All
Material = Mass Surface Volume
[kgl [m?2] [m3]
Concrete 40500.00 193.200 | 1.6200e+01
Total 40500.00 193.200 | 1.6200e+01

However, for the four lower columns, half the mass of a 1D element is guided to a support and does
not take part in the free vibration.
- The length of the columns is 4 m
- Since 10 1D elements per member were used, the length of a 1D elementis4 m/10=0,4 m
- The length of half a 1D elementis 0,4 m/2=0,2m
- The columns have a cross-section of 0,135 m? and a volumetric masse of 2500 kg/m3
0 The mass of the columns not taken into account is:
4 x 0,135 m2x 0,2 m x 2500 kg/m?3 = 270 kg
0 The mass of the self-weight taken into account is: 40500 kg — 270 kg = 40230 kg
- For MG1 the mass of the floors is 9 x 2548,42 kg/m x 6 m = 137614,68 kg
- For MG1 the mass of the roof is 3 x 1019,37 kg/m x 6 m = 18348,66 kg
- For MG2 the mass of the floors is 9 x 1529,05 kg/m x 6 m = 82568,7 kg
However only 15% was taken into account => 0,15 x 82568,7 kg = 12385,31 kg
- Vibrating mass = 40230 kg + 137614,68 kg + 18348,66 kg + 12385,31 kg
=208578,65 kg
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Manual calculation

In order to check the results of SCIA Engineer, the lowest eigen frequency of this structure is calculated by
means of the Rayleigh Method.
As specified in the previous example, the frame is idealized as a cantilever:

1

-

The masses M1, M2 and Ms can be calculated as follows:

- Self-weight of the three floor beams and four columns:
o 3x0,125 m2x 2500 kg/m3 x 6 m = 5625 kg
0 4x0,135 m2x 2500 kg/m3 x 4 m = 5400 kg
0 5625 kg + 5400 kg = 11025 kg

- Floor weight of mass group MG1:
0 3x2548,42 kg/m x 6 m = 45871,56 kg

- Weight of imposed load of mass group MG2 (15%)
o 0,15x 3x1529,05 kg/m x 6 m = 4128,44 kg

- Total: 11025 kg + 45871,56 kg + 4128,44 kg = 61024,995 kg
The mass Ms can be calculated as follows:
- Self-weight of three roof beams and half of four columns:
0 3x0,045 m2x 2500 kg/m3 x 6m = 2025 kg
0 0,5x4x0,135 m2x 2500 kg/m3 x 4m = 2700 kg
0 2025 kg + 2700 kg = 4725 kg

- Roof weight of mass group MG1:
0 3x1019,37 kg/m x 6 m = 18348,66 kg

- Total: 4725 kg + 18348,66 kg = 23073,66 kg

In order to calculate the horizontal deformations di of each floor level due to a linearly increasing load Fi, a
static load case is calculated with SCIA Engineer consisting of loads of 100 kN, 200 kN, 300 kN and 400 kN.
The following results are obtained for the nodal deformations:
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ETaTalaty m— ap s S ERE S E= NS U_H=14B.0mm

300.00 Attt —t— I —t— e = |J_x=1131mm
200,00 S T o U_x=76.0mm
100, 00—t Eras o S e S U_x=323mm

= 7
[

]U_x/=>ﬂ"0 i U_x=0.0mm U_x=0.0mm U_x=0.0mm

F1 =100 kN = 100000 N =>d: =32,3mm=0,0323 m
F2 =200 kN = 200000 N =>d2 =76,0 mm = 0,0760 m
F2 =300 kN = 300000 N =>d2=113,1mm=0,1131m
F2 = 400 kN = 400000 N =>d2 =148,0 mm = 0,1480 m

O o0OOo0o

Applying formula (2.8):

f 1 100000N * 0,0323m + 200000N * 0,076m + 300000N * 0,1131m + 400000N = 0,148m
~ 2’ [61024,99Kkg - (0,032)2 + 61024,99kg - (0,076m)2 + 61024,99kg - (0; 113m)2 + 23073,66kg - (0,148m)?
f=1,27 Hz

this result corresponds to the 1,27 Hz calculated by SCIA Engineer.
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2.5 Slabs

The last paragraph of this chapter illustrates the procedure for the Free Vibration calculation of slabs. The
applied method is entirely the same as for frames. This is shown in the following example.

Example 02-4.esa

In this example, a multi-span rectangular slab is modelled. The slab has a length and width of 6 m. The slab
has a thickness of 0,06 m and is manufactured in S 235 according to EC-EN. On two sides the slab is simply
supported, on the other two, the slab is free. In the middle of the slab, perpendicular on both simply supported
edges, a line support is introduced.

One static load case is created: the self-weight of the slab.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in
the Project Data .

Step 2 & 3: mass group

The second step is to create a Mass Group

# ° Mass groups X
B EEFE a2 O @B A vY
MG1 Name MG1
Description
Bound to load case Yes v

Load case LC1 -Self weight v o

Keep masses up-to-date with loads

Actions
Create masses from load case >>>
Delete all masses >>>
New Insert Edit Delete Close

Since the Free Vibration calculation will be executed for the self-weight of the slab, no additional masses need
to be inputted.
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Step 4: mass matrix

Next, a Combination of Mass Groups can be created.

New Insert Edit

# " Combinations of mass groups X
= fEAMFE &2 [ Inputcombinations vY
M1 Name CM1

Description

4« Contents of combination
MG1 [-] 1.000

Delete Close ||

Step 5: mesh setup

To obtain precise results for the dynamics calculation, the Finite Element Mesh is refined. Analogous as for
frames, this can be done through the main menu Tools / Calculation & Mesh / Mesh settings.

B Mesh setup

Name MeshSetupl

Average number of 1D mesh elements on straight 1D members 1
Average size of 1D mesh element on curved 1D members [m] 0.200

Average size of 2D mesh element [m] 0.250 ]

4 Advanced mesh settings

4 General mesh settings

4 1D elements

Connect members/nodes

Setup for connection of structural entities

Minimal distance between definition point and line [m] 0.001

Definition of mesh element size for panels Manual v

Average size of panel element [m] 1.000
Elastic mesh

Use automatic mesh refinement

(o Ldlfd EEAREE

The Average size of 2D elements
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Step 6: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. The default
value in the main menu Tools / Calculation & Mesh / Solver settings  is 4. This is sufficient for this example.

8 Solver setup X

Specify combinations for linear stability calculation

4 Advanced solver settings

P General
P Effective width of plate ribs
P Nonlinearity
P Initial stress
4 Dynamics

Type of eigen value solver Lanczos v

(€ Number of eigenmodes 4 )
Modal mass matrix Diagonal v

Use IRS (Improved Reduced System) method
P Mass components in analysis
P Linear stability

P Soil
B & ?{ OK Cancel

Step 7: modal analysis

The Free Vibration calculation can now be executed through the main menu Tools / Calculation & Mesh /
Calculate.

The following results are obtained:

Eigen frequencies

N f ® w? T
[Hz] [1/s] [1/s3] [s]

Mass combination : CM1

1 6.68 41.54 1755.34 0.15

> - 9.43 59.24 3505.65 0.11

3 19.37 121.72 14815.37 0.05

< 21.00 131.56 17412.72 0.05

The same way as for frames, the Eigenmodes can be visualized through Deformation of nodes now under
2D Members . The Deformed structure for value Uz shows the following:

Eigenmode 1: f = 6,68Hz Eigenmode 2: f = 9,43Hz
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Eigenmode 3: f =19,37Hz Eigenmode 4: f = 21,00Hz

Notes:

- With the option Displacement 3D, you display the deformation of both 2D and 1D elements. This allows
seeing the complete eigenmode for a structure containing both element types i.e. General XYZ projects.

- To generate all eigenmodes quickly, this document can be used: the picture of one eigenmode can be set
as a nested table for the Combinations of Mass Groups :

) 23] EIGEN FREQUENCIES
B @ a0 AR R L
D
¥ RESULT CASE
Typeof load Mass combinations v
Mass combination CM1/1-6.68 v

This way, all eigenmodes are generated automatically.

Step 8: calculation protocol

The Calculation Protocol for the Eigen Frequency calculation shows that the following “Sum of masses” is
accounted for:
Sum of masses

Mass type X Y z

[kal [kgl [ka]
CM1 | Moving mass 16956.00 | 16956.00 | 15572.44
CM1 | Total mass 16956.00 | 16956.00 | 16956.00

This value can be calculated as follows:
- The total weight of the slabs is 6 m x 6 m x 0,06 m x 7850 kg/m3 = 16956 kg
- Half of the mass of the elements near the two externally supported edges is carried to the supports
and does not participate in the vibration. Since the mesh size was set to 0,25 m, half the size of a 2D
element is 0,125 m.
0 2x6mx0,125m x 0,06 m x 7850 kg/m?3 = 706,5 kg
- The same applies for the internal edge, however the mass of the two elements on the start and end
nodes has already been taken into account in the above calculation for the externally supported edges.
This leaves a length of 6 m — 0,125 m - 0,125 m = 5,75 m.
The following figure illustrates this length:
0 2x5,75mx0,125 m x 0,06 m x 7850 kg/m3 = 677,06 kg
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- The total mass taken into account for the « Free Vibration » calculation is:
o 16956 kg—706,5—-677,06 = 15572,44 kg

Manual calculation

In order to check the results of SCIA Engineer, the eigen frequencies of the slab are calculated by a manual
calculation.

The method used here is described in reference [14] In this reference; the eigen frequency of a multi-span slab
is expressed in terms of a non-dimensional parameter

wL? |ph
}\ = —Z - p—
i D
(2.10)
Where:
w: circular frequency
L: distance between the two simply supported external edges
p: density of the slab material
h: slab thickness
D: flexural rigidity of the slab
Do Eh3
T 12.(1-v?)
(2.11)

E: modulus of Young
v: Poisson’s ratio
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In this example, the material properties are the following:
L=6m
p = 7850 kg/m3
h=0,06 m
E = 210000 N/mm? = 2,1.e? N/m?
v=0,3
(2,1e11 N/mz) + (0,06m)3

D= . = 4153846,15N. m
12 % (1 —0,3%)

The values for A for the first four modes, for a slab with two edges simply supported and two edges free, a h/L
ratio of 0,01 and an internal edge on position 0,5L are given in reference [14]:

Mode 1: A = 1,6309
Mode 2: A = 2,3050
Mode 3: A = 4,7253
Mode 4: A = 5,1271

Using these parameters in formula (2.10), the circular frequencies can be calculated:

Mode 1: w = 41,99rad/s =>f=6,68Hz
Mode 2: w = 59,34rad/s =>f=9,45Hz
Mode 3: w = 121,66rad/s =>f=19,36Hz
Mode 4: w = 132rad/s =>f=21,01Hz

The results correspond perfectly to the results calculated by SCIA Engineer:

Mode 1: f = 6,68Hz
Mode 2: f = 9,44Hz
Mode 3: f = 19,39Hz
Mode 4: f = 21,05Hz
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In this chapter, the seismic analysis in SCIA Engineer is explained in detail.

During an earthquake, the subsoil bearing a structure moves. The structure tries to follow this movement and
as a result, the masses in the structure begin to move. Subsequently, these masses subject the structure to
inertial forces. When these forces are determined, they can be applied to the structure and thus, like with the
harmonic load, the dynamic calculation is transformed to an equivalent static.

In the first part of the chapter, the theory will be explained. The theory will then be illustrated by examples,
which are again verified by manual calculations.

3.1. Theory

+ General

Analogous to the previous chapters, before examining the dynamic analysis of a complex structure, the
Seismic analysis of a SDOF (Single Degree Of Freedom) system is regarded in detail. A complete overview
can be found in references [2], [3].

Generally, this paragraph deals with the analysis of structures that are submitted to a harmonic ground motion.
The most important harmonic ground motions are earthquakes (seismic loads), but this calculation method
can also be applied to the analysis of underground or surface explosions and vibrations generated by heavy
traffic or machinery.

The following figure illustrates the displacement of a system that is submitted to a ground motion:

| vl
| u(t)
-

Yylt)

Where:
Yq(t) is the ground displacement
y(t) is the total displacement of the mass
u(t) is the relative displacement of the mass

The total displacement can thus be expressed as follows:
y(®) = yg(®) +u(®)

(4.1)
Since yg is assumed to be harmonic, it can be written as:
yg(t) = Yg.sin (v.0)
(4.2)
The equilibrium equation of motion can now be written as:
m.§(t) + cult) +ku®) =0
(4.3)
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Since the inertia force is related to the total displacement (y) of the mass and the damping and spring reactions
are related to the relative displacements (u) of the mass.

When (4.1) is substituted in (4.3), the following is obtained:
m. (ii(t) + y"g(t)) +eu® +ku®) =0
or
m. i(t) + c.u(t) + k.u(t) = —m.yg(t)
(4.4)

This equation is known as the General Seismic Equation of Motion . This equation can be used to illustrate
the behaviour of structures that are loaded with a seismic load.

Substituting (4.2) in (4.4) gives the following:
m. i(t) + c.u(t) + k.u(t) = —m. Y, v2.sin (v.t)

This equation can be compared with equation (3.2) of the previous chapter. As a conclusion, the ground motion
can also be replaced by an external harmonic force with amplitude:
F=-m.Y,.v?
g

But an earthquake will be a combination of many harmonic loads acting on different frequencies
simultaneously. The load represented in these harmonic loads is the acceleration of the structure multiplied
with the mass of the structure. The frequencies of these harmonic loads are the frequencies on which this
acceleration occurs in the earthquake.

The combination of all the accelerations over the different frequencies in the earthquake will be given by a
response spectrum. A response spectrum is therefore nothing more than a list of accelerations and the
frequencies on which they occur.

4+ Response spectra

When a structure has to be designed for earthquakes, in most cases spectral analysis is used because the
earthquake loading is often described as a response spectrum. This response spectrum can either be a
displacement, velocity or acceleration spectrum.

The relation of an earthquake (given by an acceleration time-history) and the corresponding displacement
response spectrum is given by [16]:

Sq(& w) = % U V(D). e 5T sin(w. (T — ). d‘r]

max

(4.5)
Where:
yg(1): the ground acceleration in function of time
& the damping factor
T: the period 21t/w

Instead of the displacement response spectrum S, also the velocity response spectrum Svor the acceleration
response spectrum Sacan be used. These three spectra are related by w:
S, =w.S, = wl.sy
(4.6)
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In Eurocode 8 [7] the earthquake motion at a given point on the surface is represented by an elastic ground
acceleration response spectrum  or “Elastic Response Spectrum Se” This spectrum is illustrated in the
following figure:

-

2,58

"l:l 'Il 'r_l r

A commonly used way of describing an earthquake magnitude is the so-called Richter scale. Annex A gives
a relation between the magnitude on the Richter scale and the Peak Ground Acceleration.

4+ Spectral analysis

For MDOF (Multiple Degree Of Freedom) systems, equation (4.4) can be written in matrix notation as a set of
coupled differential equations:
M.U+C.U+KU = -M.{1}.Y,
4.7

The matrix {1} is used to indicate the direction of the earthquake. For example, for a two-dimensional structure
(three degrees of freedom) with an earthquake that acts in the x-direction, the matrix is a sequence like
{1,0,0,1,0,0,1,0,0,...}.

The resulting set of coupled differential equations is reduced to a set of uncoupled differential equation by a
transformation U = Z.Q, where Z is a subset of ® (the eigenvectors) and Q is a vector, which is time-dependent.
M.Z.Q+CZQ+KZQ=-M{}LY,

Or
Z"M.Z.Q+Z".CZ.Q+Z".K.Z.Q = -Z".M.{1}..Y,

This can be simplified to a set of uncoupled differential equations:
Q+C.Q+02Q=-Z".M.{1}.Y,

(4.8)
where C" is a diagonal matrix containing terms like 2. w;. §;
Each equation j has a solution of the form:
1 [t P
Q= —ZT.M.{I}.B.fO Y, (1). e80T sin (ooj.(T—r)).dr
(4.9)

To obtain the maximum displacements, the displacement response spectrum Sd of equation (4.5) can be
substituted:
Qjmax = —-ZT. M. {1}. Sd(Ej: (*)j)

(4.10)

And:

Ujmax = —Z.ZT. M. {1}.S4(5;, ;)
Or
Uj,max =—-7.V. Sd(E]' (,0])

(4.11)

Where W: modal participation factor:

Y =z".M.{}
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3.2. Seismic load in SCIA Engineer
+ Response spectra
In SCIA Engineer, a Seismic Load can be inputted after creating a Combination of Mass Groups. This implies

that the steps used to perform a Free Vibration calculation still apply here and are expanded by the properties
of the Seismic Load.

As specified in the theory, Eurocode 8 [7] specifies an Elastic Response Spectrum Se. For design purposes,
this spectrum is reduced to a Design Spectrum S 4. This Design Spectrum is dependent on several
parameters: the Ground Type , the Ground Acceleration , the Behaviour Factor and the Damping .

When defining a spectrum in SCIA Engineer, the spectrum can be defined either by combinations of
Frequencies & accelerations, or Periods & accelerations, or by simply inputting the parameters that define this
spectrum according to Eurocode 8. If the user wishes to compose the spectrum based on the parameters in
Eurocode 8, then he will have the next input window:

# " Code parameters X

coeff accel. ag 0.015

ag - design acceleration [m/s*. 0.150
q - behaviour factor 1.500
beta 0.200
.... SybyTca Tl manally?; Mo ¥ e
s 2 Subsoil type A v =
Spectrum type type 2 v
Direction Horizontal v
Enscpency[Hx) Direction factor 1 Fs1
1 S soilfactor 1000 ,
2 0.25 Tb 0.050 hPeriod v
3 0.25 T 0250
4 0.25 Td 1.200 |EN 1998-1:2004 - Eurocode v
5 0.25 ls0.00 -
6 0.25 OK Cancel
7 0.25 e v =
2 o= A il Code parameters
9 0.26 3.91 0.03
10 0.26 3.90 0.03

OK Cancel

For a detailed description of these parameters, reference is made to Eurocode 8 [7]. The following is a brief
overview for understanding the input needed for SCIA Engineer.

- Damping : The Design Spectra of Eurocode 8 are defined for a damping ratio of 5%. If the structure
has another damping ratio, the spectrum has to be adapted with a damping correction factor n. This will be
looked upon in more detail in Chapter 11.

- Ground acceleration : The ground acceleration ag or the coefficient of acceleration a can be
calculated by means of an importance factor.
= The ground acceleration a ¢ can be calculated from the importance factor and the peak ground
acceleration (PGA) ag:

dg =Y * Agr

(4.12)
= The coefficient of acceleration «a is defined as the ground acceleration divided by the acceleration
of gravity g:
g
oa=—
g
(4.13)
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= The importance factor is derived from the return period of the seismic action and the importance of
the structure. An importance factor y; equal to 1 is assigned to the reference return period.

= The peak ground acceleration (PGA) a 4 can be found from the seismic zones in which a country is
divided. By definition, the seismic hazard within each zone is assumed to be constant. The hazard is
described by a single parameter: the peak ground acceleration (PGA) ag. The following figure
illustrates the division in seismic zones for the map of Belgium [9]:

EC8 Zonation 2011

0(-)

1 (0.40 m/s?)
2(0.60 nvs?)
3 (0.80 m/s?)
B 4(1.00 mvs?)

Zones 0 1 2 3 4
groﬁgd()fci); %/s2 / 0,39 0,59 0,78 0,98

- Behaviour factor (EN1998, 3.2.2.5): To avoid explicit inelastic structural analysis in design, the
capacity of the structure to dissipate energy, mainly through ductile behaviour of its elements, is taken into
account by performing an elastic analysis based on a response spectrum reduced with respect to the elastic

one. This reduction is accomplished by introducing the behaviour factor g.

= For the vertical component of the seismic action a behaviour factor q up to 1,5 should generally be
adopted for all materials and structural systems. The adoption of values of q greater than 1,5 in the
vertical direction should be justified through proper analysis.

= The values of the behaviour factor q, which also account for the influence of the viscous damping
being different from 5%, are given for various materials and structural systems according to the
relevant ductility classes in the various Parts of EN 1998. The value of the behaviour factor g may be
different in different horizontal directions of the structure, although the ductility classification shall be
the same in all directions.

- Beta (B): the coefficient corresponds to the lowest limit (asymptote) for the horizontal design spectrum.
The recommended value for (B) is 0,2 but can be overruled by the relevant national annex.
If you plot the spectrum as acceleration to frequency, then the most left value would be the lower

bound factor [3 multiplied with the ground acceleration.
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S ¥ " Code parameters X
coeff accel. ag 0.015
2 y ag - design acceleration [m/s"
q - behaviour factor 1.500
)
S, Tb, Tc, Td manually? No v
Subsoil type A v
Spectrum type type 2 v

Direction Horizontal v

m/s

Direction factor 1
e 2 S S - soil factor 1.000
\ B * ag = 0,2+0,15 = 0,30Hz Tb 0.050

- S, Tw, Tc, Ta manually? : If you set this to “No”, then the values to compose the spectrum are calculated
automatically from the other properties in this window.

- Ground type : the Ground Type is dependent on the soil characteristics and is specified by letters A

to E.
Ground | Description of stratigraphic profile Parameters
type
V530 (mls) NSI'I Cy (kpa)
(blows/30cm)
A Rock or other rock-like geological > 800 B B

formation, including at most 5 m of
weaker material at the surface.

B Deposits of very dense sand, gravel, or | 360 —800 |~ 50 >
very stiff clay, at least several tens of
metres in thickness, characterised by a
gradual increase of mechanical
properties with depth.

C Deep deposits of dense or medium- 180 -360 |[15-50 70 - 250
dense sand, gravel or stiff clay with
thickness from several tens to many
hundreds of metres.

[
w
<

D Deposits of loose-t0-medium <180 <15 <70
cohesionless soil (with or without some
soft cohesive layers), or of
predominantly sofi-to-firm cohesive
soil.

E A soil profile consisting of a surface
alluvium layer with v values of type C
or D and thickness varying between
about 5 m and 20 m, underlain by
stiffer matenial with v, > 800 m/s.

- Type of spectrum : If the earthquakes that contribute most to the seismic hazard defined for the site
for the purpose of probabilistic hazard assessment have a surface-wave magnitude, Ms, not greater than 5,5,
it is recommended that the Type 2 spectrum is adopted. A simple formula to find the surface wave magnitude
from the Richter magnitude scale ([29]) is:
Ms =-3,2 + 1,45.ML
(4.14)

- Direction : If the spectrum is applied in X or Y direction, then this must be set to ‘Horizontal'. If the
spectrum is to be applied in the Z direction, then this property must be set to ‘Vertical'.
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4 Calculation protocol
In the calculation protocol of SCIA Engineer the intermediate results that were determined while calculating
the global effect of a spectral loading can be found.
This paragraph describes the formulas that have been used to determine those intermediate results.

Natural circular frequency and modal shape

Mass matrix [M]p

Mass vector {m}=[M], Q3

Natural circular frequency of | .
mode shape j W

Natural normalized modal {(0}(” , Avec {qp}(Tj) oM], [ﬂqp}(j) =M () =1

shape

Total mass in k™" direction My ot
Acceleration response Sa,k,(j)
spectrum

Direction k
Total number of directions NK

Participation factor of the mode shape j in directi on k

=
m
Participation factor Yiii ={%|{A—[ﬂ} ={g}" gm}
(1)
Effective mass M\ & i) :sz,(,-) M, :sz,(j)
L . — M k.ef,(j)
Participation mass ratio Loy =———
M k,tot
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Mode coefficient for mode j

Mode coefficient in k™" G = Saki) Vi)
direction k(1) w(ZJ)
NK
. Zsa,k,(l) D/k(J)
Total mode coefficient G, =k
()~ 2
W)

Response of mode shape j

kg =G Qek)

Uiy =Gy e

{u}) = off (B, Heky)

{ti}g) =g By DRty = Saey Fhay Bk

Lateral force in node i for k E
direction

Displacement

Acceleration

= Mika) [Sa,k,(i) D/k,(i) [zohk,(i)

k(1)

Fe =ZFi,k,(j) ={U} ) A =S, ) Hhey i) A

Shear force in direction k '
— 2

Feiy = Sakay e

Overturning moment in node =
i for directign k Mi’k’(j) Mix [Sa'k'“) D/k’(j) Dp"k'(j) 1

My = Z Mikay = Z (m,k BBa ity Py Wi Q)

Overturning moment in

direction k _
M k(i) Sa,k,(i) Eyk,(i) DZ (mi,k i,k,(i) &i)
I

The calculation of these parameters will be illustrated with an example further in this chapter.
4+ Modal combination methods

Modal combination methods are used to calculate the response R of a seismic analysis. The term "response”
(R) refers to the results obtained by a seismic analysis, i.e. displacements, velocities, accelerations, member
forces and stresses.

Because the differential equations were uncoupled, a result will be obtained for each mode j.

To obtain the global response Rt of the structure, the individual modal responses R have to be combined.
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The modal combination methods that are used in SCIA Engineer are:
- SRSS method (Square Root of Sum of Squares)

Rior =

Where R the response of mode j.
- CQC method (Complete Quadratic Combination)

N N
Riot = Z Z R). pij- R

i=1 j=1

Where:
R, R the response of mode i and j
pi;j- modal cross correlation coefficients

(1 —1r2)2 +4.55r(1 +1%) + 4. (8 + &).r7

Pij =

=2

Wj

&, &: damping ratio for mode i and |

This method is based on both modal frequency and modal damping. The CQC-method thus
requires the input of additional data: a Damping Spectrum to define the damping ratio for each
mode.
In many cases however, there is no procedure to calculate the damping ratio for the higher modes.
Most of the time, the same damping ratio is then used for all modes [17].

- MAX method

N
— 2 2
Riot = [Rijya T E R
=1

where:
R() the response of mode j.
Rgmax) the maximum response of all modes.

Eurocode 8 [7] prescribes the SRSS-method . However this method may only be applied if all relevant modal
responses are independent of each other. This is met if the period of mode j is smaller or equal to 90% of the
period of mode i.

If modal responses are not independent of each other a more accurate procedure like the CQC-method needs
to be used.

The following numerical example shows this difference between SRSS and CQC.
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Example 03-1.esa

A four-storey symmetrical building is modelled in a 3D analysis (from [18], p.15-9). The building is symmetrical;
however, the centre of mass of all floors is located 25 inches from the geometric centre of the building.

Frame # 1
| | L ] | _\ L Fy
[+ 200" el 50"4-|-— 200" —»
Frame # 3
y ~ T
"\ Frame#2 I =
H =
% Il
¥ e C.G. W 5
[ n S
= ®
« — Frame # 4 M
LB - / - n v - - - ———l—
« 250" -+
«—— B50" —»

The structure has the following natural frequencies for the first 5 modes:

Mode 1: f=13,87 Hz
Mode 2: f= 13,93 Hz
Mode 3: f=43,99 Hz
Mode 4: f=44,19 Hz
Mode 5: f = 54,42 Hz

Itis clear that modes 1 & 2 and 3 & 4 are very closely spaced. It is typical for most three-dimensional building
structures that they are designed to resist earthquakes from both directions equally. Therefore the similar
eigenmodes in X and Y-direction have almost the same natural frequencies.

Because of the small mass eccentricity, which is normal in real structures, the fundamental mode shape has
X, Y, as well as torsion components. Therefore, the model represents a very common three-dimensional
building system.

The building was subjected to one component of the Taft 1952 earthquake. An exact time history analysis

using all 12 modes and a response spectrum analysis were conducted. The maximum modal base shears in
the four frames for the first five modes are shown in the figure below.
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The maximal base shear forces are:
Mode 1: F =-57,53 kN
Mode 2: F = 52,30 kN
Mode 3: F =-9,02 kN
Mode 4: F = 8,12 kN
Mode 5: F = 0,33 kN
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-

Vi, max

5230k

5230k

B2k
-

Vi,

B.iZ2k

812k

040 k

033k

V5, max

040 k

033k

To obtain the Global Response, these modal responses are combined using both the SRSS-method and the
CQC-method as well as a sum of the Absolute Values

Now the maximum total base shears using different methods are compared:

- The time history base shears are exact.

- The SRSS method produces base shears that under-estimate the exact values in the direction of the
loads by approximately 30 percent and overestimate the base shears normal to the loads by a factor

of 10.

- The sum of the absolute values grossly over-estimates all results.

- The CQC-method produces very realistic values that are close to the exact time history solution.

102.1 k

5.44 k

_ =
1M2.4 Kk

(a) Time History

116 k

16 kK

127 k

4.85k

127 k

788k

|

714k
[

714k

[

BB K
(b) SRSS

100.8 k

64k

6.0k

-

{c) Sum of Absolute Values
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Results for the global Base Shear:

Lateral Transversal
Exact solution using Time- 112,4kN 5,44kN
History Analysis
Global Base Shear using 78,8kN 78,8kN
SRSS
Global Base Shear using 111,1kN 6,37kN
CcQcC

In this example, the SRSS-method overestimates the Base Shear by a factor of 10.

For the CQC-method , the following Modal Cross Correlation coefficients p;; are used with a damping ratio §;;

of 5%.
Mode 1 2 3 4 5
1 1,000 0,998 0,006 0,006 0,004
2 0,998 1,000 0,006 0,006 0,004
3 0,006 0,006 1,000 0,998 0,180
4 0,006 0,006 0,998 1,000 0,186
5 0,004 0,004 0,180 0,186 1,000

It is of importance to note the existence of the relatively large off-diagonal terms that indicate which modes are

coupled.

If one notes the signs of the modal base shears shown on the previous page, it is apparent how the application
of the CQC method allows the sum of the base shears in the direction of the external motion to be added
directly. In addition, the sum of the base shears, normal to the external motion, tend to cancel.

The ability of the CQC-method to recognize the relative sign of the terms in the modal response is the key to
the elimination of errors in the SRSS-method .
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3.3. Seismic calculation in SCIA Engineer

The following diagram show the required steps to perform a Spectral Analysis calculation:

Activate the functionalities
“Dynamics” and « Seismic Analysis »

v

Create a mass group

/\

Generate masses from static load cases

N /

Create a mass combination

!

Create a seismic spectrum

!

Create a seismic load case

!

Refine the Finite-Element mesh if required

!

Specify the number of eigenmodes to be calculated

!

Perform a linear calculation

Input masses

As specified in the theory, the dynamic calculation is transformed to an equivalent static calculation. Therefore,

a Linear Calculation needs to be executed. During this calculation, the Free Vibration Calculation will also be
performed since this data is needed for the Seismic results.

The diagram is illustrated in the following examples.
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Example 03-2.esa

In this example a three-storey structure is modelled as a cantilever. The members have cross-section IPE200
and are manufactured in S 235 according to EC-EN. The height of each storey is 4 m. At each storey-level,
the structure carries a mass of 500 kg.

IPE.

IPE200
4000

IPE200

One static load case is created: the self-weight of the structure. However, in order not to take the self-weight
into account for the dynamic calculation, the volumetric mass of S 235 can be set to 1 kg/m3 in the Material
Library. This will render it easier to check the results through a manual calculation.

The structure will be subjected to an earthquake in X-direction according to Eurocode 8, using a Design
Response Spectrum for Ground Type B with a behaviour factor of 2. The coefficient of acceleration is 0,35.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in
the Project Data . In order to execute a Seismic calculation, also the Seismic spectral analysis functionality
needs to be activated:

Project data X

Basicdata Functionality Actions UnitSet Protection

GENERAL

DETAILED

Property modifiers 4 Dynamics

Model modifiers Modal & harmonic analysis

Seismic spectral analysis g

Parametric input

Climatic loads Dynamic time-history analysis

60

Mobile loads 4 Subsoil
Dynamics ‘_'7 Pad foundation check
Stability 4 Steel
Nonlinearity Fire resistance checks

Structural model

Steel connections

IFC properties Scaffolding
Prestressing
Bridge design
Construction stages
OK Cancel
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Step 2: mass group

The second step is to create a “Mass Group” .
B Mass groups
HEiEEFE «a» O @@ A
MG1 Name MG1

Description

Bound to load case Yes

Load case LC1 -Self weight

Keep masses up-to-date with loads

Actions

Create masses from load case

New Insert Edit Delete

Delete all masses

o>

o>

Close

Step 3: masses

After the Mass Group has been created; the 500 kg masses can be inputted on each storey level:

Step 4: combination of mass groups

Next, the Mass Group is put within a Combination of Mass Groups
Seismic load case.

B " Combinations of mass groups
= -fE&FE & 2 [ Inputcombinations
CM1 Name CM1

Description
4 Contents of combination
MG1 [-] 1.000

New Insert Edit Delete

, which can be used for defining the

MJA — 2024/02/29
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Step 5: seismic load case

After creating a Mass Combination, a Seismic load case can be defined through the workstation « Loads »

and « Load Cases ».
The action type is « Variable ».

The load type is « Dynamic ».
The specification is « Seismicity ».

B " Load cases

= -fRiFrEWw &« OO0 A

LC1 - Self weight
LC2 - SX

Name

Description
Action type Variable
Load group

Load type

Specification

LC2
SX

LG2
Dynamic

Seismicity

Now the parameters for the seismic load case will become visible. These parameters will now be explained

(going from top to bottom).

Name
Description
Action type
Load group
Load type
Specification
« Seismic action
Response spectrum
Direction
Rotation about Z axis [deg]
Factor X
Factor Y
Factor Z
Acceleration factor
Overturning reference level [m
4 Equivalent lateral forces
ELF method
4 Accidental eccentricity
Method
4 Modal superposition
Type of superposition
Unify eigenshapes
Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case

Combination of mass groups

62

LC2

SX
Variable
LG2
Dynamic

Seismicity

0
1
0.000

Disabled

Disabled

SRSS

None
CM1
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= Response Spectrum :

0 After choosing the « Load type » as « Dynamic », you will see the different spectrums
which are already composed in the project (FS1 by default). You can tick on the three
points on the line “Response Spectrum » to go to the list with spectrums, and then choose
“New” to create a new spectrum.

4 Seismic action

Response spectrum FS1 Yo
o It is also possible that there is no spectrum in the project yet. Then, after choosing the
« Load type » as « Dynamic », the software will automatically open the list with spectrums
and click on “New” for you. The next window will pop up. Choose « Input type =
Eurocode » and tick on « Code Parameters ».
Seismic spectrum X

Frequency([Hz] Period([s] Acceleration[m/s™:
1 0.00 1000.00 0.69 Name Fs1
2 0.5 3.98 0.69 Drawing type Period Y
301 0.25 3.97 0.69
4 0.25 3.96 0.69 E"Pu( type EN 1998-1:2004 - Eurocode ¥ ]
5 0.25 3.95 0.69

- Max frequency 30.00 Hz

6 0.25 3.94 0.69
7 0.25 3.93 0.69
ol 028 292 069 [ Code parameters ]
9 0.26 3.91 0.69
10 0.26 3.90 0.69 oK el

0 In« Code Parameters », the spectrum will be defined:

= The coefficient of accelerationa 4 is 0,35.
Note that ag is automatically calculated after changing coefficient of acceleration
ag.

= The behaviour factor q is 2.

= The subsoil type is type B .

= The spectrum type is type 2.

= The spectre is used in X (and Y) direction, so the horizontal direction.

B " Code parameters X

coeff accel. ag 0-350
ag - design acceleration [m/s". 3.433

q - behaviour factor 2.000

beta 0.200
S, Tb, Tc, Td manually? No v
[ Subsoil type B v]
Spectrum type type 2 v
Direction Horizontal v

Direction factor 1
S - soil factor 1.350
Tb 0.050
Tc 0.250

Td 1.200

OK Cancel

o After changing the parameters, click on « OK » until you get back to the load case.
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= Direction : you need to choose a direction (X, Y or Z) to apply a spectrum in this global direction. We
advise to use one direction by load case, and to combine the different load cases in one seismic
combination.

= Rotation around Z axis [deg] : if you decide to apply a spectrum in an inclined direction from X, Y or
Z axis, you can define a rotation angle. For example if you define 45° in the X direction, the spectrum
will applied in the following direction:

b 4

spectrum direction

ﬂ45° >
X

= X, Y Z coefficients : this is used to modify the accelerations in the spectrum without changing the
spectrum parameters. We advise to set thisto 1 .

= Acceleration factor : this factor is multiplied with the factor X, Y, Z (all of them). This factor should be
setto 1 since the acceleration factor is already used in the parameters of the spectrum.

= Overturning : this parameter is used when the supports of the structure are above ground level. By
default , this value equals 0.

= Equivalent lateral forces :the analysis method by default in the software is the 4.3.3.3 article « Modal
analysis using response spectrum ». But by ticking this option, the software will apply the method of
4.3.3.2 article « Analysis method using lateral forces ».

= Accidental eccentricity : most of the seismic codes require that structures are checked for torsion
due to mass eccentricity including an additional eccentricity, which is the “accidental eccentricity”.
Please note, that “accidental eccentricity” may be used only together with the reduced model
analysis . We will explain the reduced model analysis and accidental eccentricity later on.

= Modal superposition
- Type of superposition : here the type of modal superposition can be chosen. In this example,

the SRSS method is used. The use of the CQC method will be illustrated later on.
= SRSS: Square Root of Sum of Squares. Because of the square root in the
formulas of the modal combination methods, the results are always positive .

R= \/Rfl) +RY,) + RE) + Ry + RY) + -

= Max: modified SRSS method (method not included or described in Eurocode 8)

N
Reot = [Rfjmax) + Z R
=1

= CQC: Complete Quadratic Combination

N N
Reot = Z Z Rg)-pij- Rg)

i=1 j=1

- Unify eigenshapes : this option can be used in the seismic analysis in the case of the method
SRSS. Classical the following formula is used for SRSS:

— 2 2 2 2 2
R = JR(D + Ry + Rz) + Ry + R +
If the option unify eigenshapes is checked, then the following condition is verified:
0).
1- El < precision % (ori <jand w; < wj)

]
If the check is fulfilled and mode (i) and (j) are multiple, then the superposition will be
modified:

— |p2 2 2 2
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Note:

The options under Multiple Eigen Shapes can be used to avoid the errors in the SRSS-
method for closely spaced modes. As specified in the theory however, it is advised to use
the CQC-method in such cases (Eurocode 8 article 4.3.3.3.2).

Filter on total mass ratio : Only modes with the highest modal mass ratio are taken into
account for modal superposition. Modes are sorted in decreasing order of their modal
mass ratio and superposed until the specified cumulated mass ratio is reached.

The ratio to reach should be at least 90% to respect the article 4.3.3.3.1 from EN 1998-1-
1.

4 Modal superposition
Type of superposition SRSS v
Unify eigenshapes
Filter on total mass ratio
Required total mass ratio [%] 100.00
Filter on minimal mass ratio

Use residual Mode

Filter on minimal mass ratio : Only modes with a modal mass ratio higher than the
specified value are taken into account for modal superposition.

The minimal mass ratio should be at least 5% to respect the article 4.3.3.3.1 from EN
1998-1-1.

4« Modal superposition
Type of superposition SRSS Y
Unify eigenshapes
Filter on total mass ratio
Filter on minimal mass ratio
Required minimal mass ratio [9%] 100.00

Use residual Mode

Note: if the two previous filter options are not ticked, all modes asked by the user will be
displayed and considered in the modal superposition.

(0]

Use residual mode : you have to verify if 90% of the total mass is included in de modal
masses (EN 1998-1-1 art.4.3.3.3.1). This will be checked later on in the calculation
protocol. If the number of total participating mass is under 90%, the number of eigen
frequencies has to be increased.

To avoid this check, it is possible to choose missing mass in modes or residual mode .

= Signed results / Dominant mode : you can select the mode shape which will be used to define the
sign. If automatic is chosen as mode shape, the mode shape with the biggest mass participation is
used (sum of direction X, Y and Z). This option can be used for example for shear walls.

This result only makes sense if this single eigenmode is clearly the most dominant for that spectrum,
and all other modes have almost no significance for that spectrum. But since this option manipulates
the results, we advise you not to use it , unless you have a very good knowledge of SCIA Engineer
and of seismic calculations.
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To conclude, the complete set of parameters in the load case will be shown in the image below:

B Load cases

X

= fEZFEWw «a2 OO0 A

Y

LC1 - Self weight
LC2 - SX

New Insert

Edit

Name
Description
Action type
Load group
Load type
Specification
4 Seismic action
Response spectrum
Direction
Rotation about Z axis [deg]
Factor X
Factor Y
Factor Z
Acceleration factor
Overturning reference level [m]
4 Equivalent lateral forces
ELF method
4 Accidental eccentricity
Method
4 Modal superposition
Type of superposition
Unify eigenshapes
Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case

Combination of mass groups

LC2

SX
Variable
LG2
Dynamic

Seismicity

FS1

X
0.00
1

0

0

1
0.000

Disabled

Disabled

SRSS

None
CM1

Actions

Delete all loads

Copy all loads to another loadcase

Delete

o>

o>

Close '
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Step 6: finite element mesh

As specified in the previous chapters, the finite element mesh needs to be refined to obtain precise results.
This can be done through the main menu Tools / Calculation & Mesh / Mesh settings.

For this example however, the default mesh is not refined which will make it easier to verify the results by a
manual calculation. But for a default dynamic calculation, we advise to change the number of 1D elements in
the finite mesh to 5 ~ 10 finite elements.

¥ " Mesh setup X

Name MeshSetupl

( Average number of 1D mesh elements on straight 1D members 10 ]

Average size of 1D mesh element on curved 1D members [m] 0.200
Average size of 2D mesh element [m] 1.000
Connect members/nodes D
Setup for connection of structural entities

P Advanced mesh settings

B (& 'QI/ OK Cancel

Step 7: number of frequencies

The last step before the seismic results can be checked, is setting a sufficient amount of eigenmodes to be
calculated. For this example, 2 eigenmodes are chosen.
In the main menu Tools / Calculation & Mesh / Solver settings , the number of frequencies is thus set to 2.

B Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
P General
P Initial stress

4 Dynamics

Type of eigen value solver Lanczos v
( Number of eigenmodes 2 ]
Modal mass matrix Diagonal >

Use IRS (Improved Reduced System) method

P Mass components in analysis

P Soil
B & & OK Cancel
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Step 8: general results

A linear calculation and eigenmodes have been performed.

The deformed structure can be shown to view the eigenmodes using the 3D displacements :

RESULTS (1) A X
Name Déplacements 3D
¥ SELECTION
Type of selection  All v
Filter No v
¥ RESULT CASE
Typeofload Mass combinations v
Mass combination CM1/2-3.44 v
Wireframe E
| y
| \
i
|
|
|
)
|' |
I |
IL"- \
> X =l ¢
Eigenmode 1 Eigenmode 2

The eigenmodes can be displayed by this option:

B ™ 4 QO

i D W G

Eigen frequencies

e A

Mass combination : CM1
1 0.53 3.30 10.91 1.90
2 3.44 21.62 467.64 0.29
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To check if the number of modes is sufficient, we have to have a look to the calculation protocole for the
eigen frequencies . To display the calculation protocole, the modal analysis has to be calculated (via the menu
Tools / Calculation & Mesh / Calculate ).

L

RESULTS (1) N X

Name Protocole de calcul -

Type Eigen frequency v

Include list of assumptions @
ACTIONS >»

Mode iega [rad Period Freq. MNa | ™ L ") Wi [Wisce Wy /[Wiee Wai/Wiaee u g [Waee vig/Wyeot 21 g/ Wzt
1 3.3027 1.90 .53 -33.0158 0.0000 0.0000 0.7267 0.0000 0.0000 0.0000 0.2722 0.0000
2 21.6256 0.29 3.44 17.9771 0.0000 0.0000 0.2154 0.0000 0.0000 0.0000 0.5271 0.0000

0.9421 0.0000 0.0000 0.0000 0.7993 0.0000

As specified in the first example of this course, the Modal Participation Factors show the amount of mass
that is vibrating in a specific eigenmode as a percentage of the total mass.

For the first Eigenmode, 73% of the total mass is vibrating. For the second Eigenmode, 22% is vibrating. In
total, these two Eigenmodes account for about 94% of the total mass.

According to Eurocode 8 [7] the sum of the effective modal masses for the modes taken into account must
amount to at least 90% of the total mass of the structure.

This criterion is fulfilled which indicates the two Eigen modes are sufficient for this example.

But it is important to see that the number of eigenmodes taken into account is only sufficient in the X-
direction to evaluate a dynamic load working in the X-direction . If the total would be under 90%, the number
of eigenmodes in the solver setup would have to be augmented and the calculation protocol for the Eigen
Frequency would have to be checked again.

The Damping ratio shows the manually inputted damping ratio for the respective Eigenmodes.
It is important to keep in mind that the Seismic Spectra of Eurocode 8 have been calculated with a damping
ratio of 5% as specified in the theory. When a damping ratio is manually inputted, the spectra need to be
adapted. This is done through the Damping Coefficient .

- Sax, Say and Saz represent the spectral accelerations

- G()) is the mode coefficient for mode j.

- Fx and Fy are the Base Shears for each mode.

- Mx and My are the Overturning Moments for each mode.

The last line in the table shows the global response. This response was obtained by means of the SRSS-
method for combining the modal responses.

The formulas for these parameters have been shown in the theory and a manual check can be found in annex
C.
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Example 03-3.esa

The previous example is repeated and will now be calculated using the CQC-method
damping ratio of 2% is used.

In Step 6, the CQC method is chosen in the “Type of superposition” option:

B Load cases X
H-EFEE Ao O @B Al vY
LC1 - Self weight Name LC2
e Description SX
Action type Variable v
Load group LG2 A g
Load type Dynamic v
Specification Seismicity v
4 Seismic action
Response spectrum FS1 A o
Direction X v
Rotation about Z axis [deg] 0-00
Factor X 1

FactorY 0
FactorZ 0
Acceleration factor 1
Overturning reference level [m] 0.000
4 Equivalent lateral forces
ELF method Disabled v
4 Accidental eccentricity
Method Disabled v

4 Modal superposition

Type of superposition CQC v
Damping [96] 2.00

Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case None v

Combination of mass groups CM1 v

Actions
Delete all loads >>>
Copy all loads to another loadcase >>>
New Insert Edit Delete Close

. For all frequencies, a

After choosing « CQC » for the type of superposition, an option « Damping » displays below. The user has to
defined a constant damping ratio which will be used for all eigenmodes. By default, the displayed ratio is equal
to 5% because this is the ratio used in the seismic spectrums definition of the Eurocode 8. But in this example,

the ratio will be equal to 2%.

This damping spectrum will be used for the calculation of the Modal Cross Correlation coefficients  of the
CQC-method and will also be used to calculate the Damping Coefficient for each mode as specified in the

previous example.

When the spectrum has been inputted, the Linear Calculation can be re-run.
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The following results are obtained through the Calculation protocol of the Linear Calculation :
] Saz Gfj)  Fx

: 1 Im/s’] [mfs7] [mjsi [ [kl [kN] [ikdim]
1 0.53 0.02 1.19523 0.73| 0.821] 0.000] o0.000] 2.48] 0.89] 0.00| 0.00] -8.95
2 3.44 0.02 1.19523 0.22| 5.059] 0.000] 0.000] 0.23| 193] 0.00] 0.00] 5.5/
Niveau= | 0.00 0.54 2.12] 0.00] 0.00] 10.54

The results show that for each mode, the Damping Ratio is equal to 2%.

As specified in the theory, the Seismic Spectra of Eurocode 8 have been defined using a Damping Ratio of
5%. Since now another value is used for the damping, the spectrum needs to be corrected using a Damping
Coefficient n.

Following Eurocode 8 [6], this coefficient is calculated as follows:

= 10 > 0,55
"= le+pT

Where: £ = Damping Ratio expressed in percent.

(4.13)

For a default damping ratio of 5%, n equals unity.

The lower limit of 0,55 for the Damping Coefficient indicates that Damping Ratio’s higher than + 28,06% have
no further influence on the seismic spectrum.

For the exact application of n in the formulas of the seismic design spectra, reference is made to Eurocode 8

[7].

In this example, the damping ratio of 2% causes the following Damping Coefficient:

= 10 103
L s

This indicates that the spectral accelerations will be augmented by 20% due to the fact that less damping is
present in the structure. The spectral accelerations of the previous example can thus be multiplied by n:
Sax,1) = 0,6870 m/s? ¥ 1,1953 = 0,8212m/s”
Sax,(2) = 4,9856 m/s?* 1,1953 = 5,9589 m/s?

With these new spectral accelerations, the calculation of the Base Shear, Overturning Moment, ... can be
repeated.

Manual Calculation

In this paragraph, the application of the CQC method is illustrated for the global response of the Base Shear.

- Mode 1: w(y = 3,3027rad/s F1y = 0,8951kN
- Mode 2 w(,) = 21,6256rad/s F(;) = 1,9258kN
Using a spreadsheet, the Modal Correlation coefficients p;; are calculated with a damping ratio &;; of 2%.
Mode 1 2
1 1 0,0003065
2 0,0003065 1
N N
Reot = Z Z Ry pij- Ry
i=1 j=1

0,8951kN * 1 = 0,8951kN
+ 0,8951kN * 0,0003065 * 1,9258kN
+1,9258kN * 0,0003065 * 0,8951kN
+1,9258kN * 1 * 1,9258kN

Ryor = 2,12kN

Riot =
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3.4.

Seismic combinations

There are different possibilities to create load combinations which include also seismic load cases.
Here we will explain the optimal method in SCIA Engineer using an example.

Example 03-4.esa

First of all, three load cases are created.

The general format of effects of actions should be:
Eq = E(Gj; P; Apa; W2iQxi)  j=15i>1

The combination of actions in brackets can be expressed as:

z Gk’l n+n P n+n AEd" + n Z LIJZ'iQk'i

j=1

Where Euq:

i21

Eedax + 0,3.Eedy + 0,3.EEdz
0,3.Eedx + Eedy + 0,3.EEedz
0,3.Eeax + 0,3.Eedy + EEd:

So, there load cases include respectively the seismic spectra in the directions X, Y and Z.

For example:

B Load cases

= fERFEER S O @@ A

LC1 - Self weight
LC2-SX
LC3 - SY

LC4 -SZ

LCS-LL/ catE

New Insert

Name LC4
Description SZ
Action type Variable
Load group LG2
Load type Dynamic
Specification Seismicity

4 Seismic action

Response spectrum FS2
Direction Z
Factor X 0
FactorY ©
FactorZ 1

Acceleration factor 1
Overturning reference level [m] 0.000
4 Equivalent lateral forces
ELF method Disabled
4 Accidental eccentricity
Method Disabled
4 Modal superposition
Type of superposition SRSS
Unify eigenshapes
Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case None

Combination of mass groups CM1

Actions

Delete all loads

Copy all loads to another loadcase

Edit Delete

B

e

Close

Please note that a different Eurocode must be generated for the vertical direction. In SCIA Engineer, a load
case must be made for component of the earthquake in the X-direction, another for the Y-direction, and another

for the Z-direction.

Please make sure that the ‘factor’ just underneath the spectrum, « Coef.Z », is not set to ‘zero’, since the

accelerations in the seismic spectrum will be multiplied with this value.
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8" Code parameters X

coeff accel. ag 0.015
ag - design acceleration [m/s*: 0.150

q - behaviour factor 1.500

@ beta 0.200
Subsoil type D v 7 =
Spectrum type type 2 v
[Direction Vertical V]
Sy 0] ‘ Direction factor 0.45
1 0.00 1 Fs2
S - soil factor 1.000
2 0.25 3 Tb 0.050 Per?od v
’ 3 0.25 3 Tc 0.150
4 0.25 3 EN 1998-1:2004 - Eurocode ¥
° Td 1.000 B
‘- 5 0.25 3 —32‘00 Hz
6 0.25 3 OK Cancel
7 0.25 3ize wiva =
8 0.25 3.92 0.01 Code parameters
9 0.26 3.91 0.01
{ 10 0.26 3.90 0.01 OK Cancel

Next, we have to assign a type of load group to the seismic load case.

First of all, the relation between load cases in the same group has to be defined. The three seismic spectra
have to appear always in the same combination. So, the option ‘together’ will be chosen here.
Next, the type of load has to be selected: for this, the special type ‘seismic’ has been implemented.

# " Load groups X
= iERFE «a2 O =B A vY
LG1 ‘ e [

LG3 Relation Together Y
LG2

Load Seismic

New Insert Edit Delete Close
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After the creation of seismic load cases, the combinations can be made. For this purpose, a new type of
combinations was implemented: namely the Seismic combination according to the EC-EN.

To use this special type of combination, the seismic load cases must have a load group with properties ‘seismic’
and ‘together’ assigned to it. Also no active coefficients can be used.

# ° Combinations X
= -fEMFE &2 [ Inputcombinations v
ULS-Set B (auto) Name ULS-Seis (auto)

SLS-Char (auto)

Description

Type EN-Seismic
Updated automatically
Structure Building
Active coefficients
4 Contents of combination
LC1 - Self weight [-] 1.000
LC2-SX[-] 1.000
LC3-SY[-] 1.000
LC4 -SZ [-] 1.000
LC5-LL/ catE[-] 1.000

Actions
Explode to envelopes >>>
Explode to linear >>>
Show Decomposed EN combinations  >>>
New Insert Edit Delete Close

This combination envelope will automatically look at the seismic load cases with both a positive and a negative
coefficient, and will automatically make one of the seismic load cases the primary load case and the others
secondary load cases.

If we would not yet take into account that the coefficients can be both positive and negative, then an example
would be:

Eedax + 0,3.Eedy + 0,3.EEdz

0,3.Eedx + Eedy + 0,3.EEedz

0,3.Eeax + 0,3.Eedy + EEd:

Note:

In the case of the EC-EN, we have to make two sets of combinations, one for the deformations and one for
the internal forces . This means that we would have in total six EN-Seismic load cases.

For internal forces, the load cases have to be introduced as described above.
For deformation results, we must create three new load cases, which have a behaviour factor g equal to 1,0.

If we consider our example with a q factor of 1,5, we would have to copy the existing seismic load cases, and
give the new load cases new spectra with a behaviour factor q set to 1,0:
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# ' Load cases X

HiEFEE s O B A vY
LC1 - Self weight Name LC8
S Description SZ def
e Action type Variable v
LC4 -SZ
LC5 - LL/ catE Load group LG2 e
LC6 - SX def Load type Dynamic v
LC7 - SY def Specification Seismicity v
LC8 - SZ def 4 Seismic action

Response spectrum FS2 7

Niractinn Z v

Then all you have to do, is make a new seismic combination envelope with the new load cases:

# ' Combinations X
= B E &2 [ Inputcombinations v M
ULS-Set B (auto) Name Seismic_Def |
SLS-Char (auto) Description
ULS-Seis (auto) Type EN-Seismic
Seismic_Eff =
Seismic_Def Structure Building
Active coefficients
4 Contents of combination
LC1 - Self weight [-] 1.000
LC5-LL/ catE[-] 1.000
LC6 - SX def [-] 1.000
LC7 - SY def [-] 1.000
LC8 - SZ def [-] 1.000
Actions
Explode to envelopes >>>
Explode to linear >>>
Show Decomposed EN combinations >>>
New Insert Edit Delete Close
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3.5. Mass in analysis

As mentioned before, the sum of the effective modal masses for the modes taken into account must amount
to at least 90% (EN 1998-1-1 art.4.3.3.3). The user can try to achieve this with the following possibilities:

- Take more natural frequencies into account

- Assign mass more to nodes/connection instead of beams (to avoid local eigenmodes).

The mass which has not been taken into account (for example, if the effective modal mass is 90%, then there
is 10% not taken into account), can be treated in two possible different ways in SCIA Engineer:

4« Modal superposition
Type of superposition CQC v
Damping [%] 5-00
Filter on total mass ratio
Filter on minimal mass ratio

Use residual Mode

The used method is set in each seismic load case and is again displayed in the linear calculation protocol.
Let's take as example that the effective modal mass in a direction is 90%. Then how can the other 10% be
treated?
- Ifthe option « Use residual mode » is not ticked: in this case, the 10% would be ignored. We would
only take into account 90% of the mass of the structure to calculate the effects of an earthquake.
- If the option « Use residual mode » is ticked: in this case, a ‘fictive’ mode corresponding to the
combination of all missing modes can be calculated. But since these missing modes are over
different natural frequencies, the last found frequency will also be the natural frequency of this
mode. In the calculation, the forces in this mode will be calculated in the same way as in the other
modes.

A detailed explanation of these modes by using examples can be found in Annex D.

3.6. Modal superposition

The response spectrum method uses a modal superposition of the relevant eigenmodes of the structure. The
methods which are used for modal superposition are the ones described at the beginning of the chapter: SRSS
or CQC.

These methods have the advantage of very easily providing design values of all results (displacements,
internal forces...) but only part of the information is available:

- Min and max values of any result can be determined;

- The actual sign of a result cannot be defined;

- The concomitance of separate results cannot be defined.

The loss of concomitance and sign of results is an issue typically when computing resulting forces in shear
walls: it is not possible to compute a resultant from internal forces after modal superposition, as typically all
raw results are positive.

Computing resultant forces in one of those shear walls would typically give near-zero moments and extremely
overestimated axial forces.

An automatic method can be used since using signed results (described below) is only a workaround to obtain
usable resulting forces.
The rigorous method for computation of resultants in the context of the response spectrum method can be
summarized as follows:

- Compute the local internal forces for each eigenmode;

- Compute the resultant force for each eigenmode separately;

- Apply the modal superposition to the obtained modal resultant values.
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When proceeding so, no result signature is necessary to obtain correct values of resulting forces. Moreover
there are cases where the method described in the previous paragraph gives overestimated results of most
result components and can therefore only be seen as an approximation. The method described here is clearly

more accurate.

This option is enabled by default for new projects in SCIA Engineer. For old projects (created before version
2013), you have to open the main menu Tools / Calculation & Mesh / Solver Settings.

To obtain usable values of resulting forces, a possibility is the so-called “signed results” method.
It consists of applying some signature scheme to raw results of the modal superposition. A classical approach

uses the sign of the most significant eigenmode.

It is however very important to know that this method will only give good result if there is 1 and only 1
eigenmode of great importance in that respective direction (compared to the other eigenmodes).

__ Superposition o Mode
_ modale & prédominant
il i
BT _ -JhE"'!_l_b_‘— _._'_Jﬁl
— T43 jn =3 IHEE = IQ:E
!‘e i ()

Enveloppe des résultats signés

Applying this to shear walls, it is possible to “sign” the internal forces, making them suitable for computation of

resulting forces.

You can sign results in SCIA Engineer by selecting a signature mode manually or a default mode determined
by the program. If the Automatic is chosen, the mode shape with the biggest mass participation is used (sum

of direction X, Y and 2):
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# 7 Load cases X
HiEFEE S O @ A v Y
LC1 - Self weight Name LC2
LE2-5% Description SX
Action type Variable v
Load group LG2 2 e
Load type Dynamic v
Specification Seismicity v
4 Seismic action
Response spectrum FS1 2 e
Direction X v
Rotation about Z axis [deg] 0.00
Factor X 1
FactorY ©
FactorZ ©

Acceleration factor 1
Overturning reference level [m] 0.000

4 Equivalent lateral forces

ELF method Disabled v
4 Accidental eccentricity
Method Disabled v
4 Modal superposition
Type of superposition SRSS v
Unify eigenshapes

Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Dominant mode shape Automatic A
Master load case |[Automatic

Combination of mass groups

Actions

Copy all loag

oo-qnm;wln—

New Insert Edit Delete
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Chapter 4: REDUCED ANALYSIS MODEL

4.1. Theory

The actual tendency in FE structural analysis is using full 3D modelling of the considered structure. SCIA
Engineer obeys that rule as structures are usually modelled in 3D using beam and shell elements, including
buildings.

Once a detailed 3D model is ready for statical analysis of a structure, it is natural to use it also for dynamic
analysis and, more specifically, for seismic design. A typical issue of full 3D model is, that seismic design
regards mostly the global behaviour of the structure whence the full mesh of the structure provides a lot of
information about local behaviours. When performing the modal analysis, the full mesh finds all local and global
vibration modes, but the local modes are irrelevant for the overall seismic response of the structure. It appears
hence logical to use a different, reduced mesh for the dynamic analysis, which ignores these local modes.

There are well known matrix condensation techniques (Guyan Reduction, also known as static condensation)
which allow the user to obtain a reduced system in a very efficient way, but those methods are not well suited
for dynamic analysis. An Improved Reduced System (IRS) method has been developed which takes into
account not only the stiffness matrix of the system, but also the mass matrix during the condensation process.
That method proved to give excellent results for dynamic analysis, with both modal analysis and direct time
integration methods.

The algorithm implemented in SCIA Engineer uses the IRS method and consists of 3 steps:

1. The IRS method is used for condensing the mesh of the analysis model.

2. The modal analysis is performed using the reduced mesh, which has typically 1’000 times less degrees of
freedom than the original full mesh. This makes the calculation of eigenvalues massively faster on large

structures and also avoids unwanted local modes. The latter is particularly interesting for seismic analysis.

3. The results of the reduced system are expanded to the original full mesh, allowing for output of detailed
results in the entire structure.

42'840DoF 24 DoF
Full 3D storey- Condensed model Expand back to full
based input & dynamic analysis mesh for result input
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The IRS method allows:

1. Elimination of irrelevant, local bending vibration modes in the slabs : local modes in all structural
elements are implicitly removed, due to the elimination of unwanted degrees of freedom. Of course, adding
more reduction nodes would allow for more detailed analysis of local modes, but it is particularly interesting for
seismic analysis to keep in the reduced model only the nodes that are strictly necessary to reproduce the
typical seismic behaviour of a building. Ultimately, it is up to the user to choose the reduction points in such a
way that the wanted eigenmodes are obtained.

2. Reduction of computation time : the computation time is reduced, due to the drastic reduction of the
number of degrees of freedom; actually, the reduction is even more important than with diaphragms, as
supporting members are also condensed.

3. Easy handling of mass eccentricities for each deck : the IRS analysis uses a full mass matrix, which
allows for exact implementation of mass eccentricity in each node of the reduced system.

Remark: The elimination of unwanted frame effects from the structural behaviour (considering deck slabs as
diaphragms) is not addressed by the IRS analysis in itself, as it does not modify the mechanical behaviour of
the structure. However, as unwanted local bending modes are implicitly removed from the reduced system,
so-called flexible diaphragms may be easily simulated by significantly reducing the bending stiffness of deck
slabs. Not only does that allow obtaining classical diaphragm behaviour by means of a very low bending
stiffness, but also intermediate behaviour where the bending stiffness is less drastically reduced and frame
effects are therefore reduced, but not completely removed.

The condensed model is obtained from Reduction nodes. R-nodes are placed in each storey, at the specified
level, in the middle of the structure (all R-nodes are located on the same vertical axis).

During the analysis, the reduced model is automatically generated from the full mesh of the structure. Each
node of the full mesh is mapped to the closest R-node. In a typical building configuration, this means that each
R-node will receive the stiffness, loads and masses from the corresponding deck slab, from the top half of the
supporting members below the slab and from the bottom half of the supporting members above the slab.
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Unlike the classical modal analysis, which typically uses a lumped mass matrix (only diagonal terms are non-
zero), the reduced system uses a full mass matrix , with non-zero values out of the diagonal. This means that
mass eccentricities can be taken into account easily by the reduced system. The very small size of the reduced
system allows using the full mass matrix.

Therefore the reduction points — or so-called R-nodes — that will constitute the reduced model do not need to
be located in a particular position, such as the mass centre of each storey. As the structure may have to be
calculated several times with various distributions of the masses, the mass centre of each storey is likely to be
slightly different depending on the selected mass combination. Thanks to the use of a full mass matrix, the
same R-nodes may be used in all cases.

During the analysis, the reduced model is computed automatically from the full mesh. Each node of the full
mesh is mapped to the closest R-node of the reduced model.

4.2. IRS Method in SCIA Engineer

To make an IRS calculation, you first have to perform all the steps as described in detail for seismic calculation
in previous chapters. As a reminder, those steps are:

Activate the functionalities
“Dynamics” and « Seismic Analysis »

v

Create a mass group

/\

Input masses Generate masses from static load cases

o~ -

Create a mass combination

!

Create a seismic spectrum

!

Create a seismic load case

!

Refine the Finite-Element mesh if required

!

Specify the number of eigenmodes to be calculated
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Before doing the linear analysis, the additional steps you have to execute in order to make an IRS calculation
are:

1. You have to enable the reduced model analysis in the project. This can be done via the main menu
Tools / Configuration and mesh / Solver Settings

B Solver setup X

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
P General
P Effective width of plate ribs
P Initial stress
4 Dynamics
Type of eigen value solver Lanczos v
Number of eigenmodes 10
Use IRS (Improved Reduced System) method
P Mass components in analysis

P Soil

\B‘ o8 & 0K Cancel

> |

2. Define the building storeys. The Reduction nodes will be calculated from the storey data. In SCIA
Engineer, each storey is reduced into one R node.

bounding box

To introduce the building storeys, go to the input panel and in « Line grid and storeys », click on
“Storeys”:

| INPUT PANEL | &8  Allworkstations v
|= Grids & Storeys V\ & All tags v

‘@ R @ BRIl OO DNO
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The storey manager where you can input the levels opens:

Storey manager X
13390
n
o
n
PE
[
n
v %
“vom——
Name Z-Bottom [m] Height [m] Repetition Z-Top [m] Description
1 FL1 0.000 4.500 1 4.500
2 FL2 4.500 4.500 1 9.000
3 FL3 9.000 4.500 1 13.500
4 FL4 13.500 0.000 1 13.500
Insert Delete Inserting point X 0.000 m Y 0.000 m OK Cancel

With the default settings, the deck slab of each storey is located at the bottom of the storey, and so is
the corresponding R-node. It is recommended to keep it that way. This can be seen from the storey
Properties:

==

STOREY (1) A

Name
Description
Z-Bottom [m]
Height [m]

Filtered allocation of Entities | *=—

Allocation type  All inside v
Include membersontop (O )
Include members on bottom @~
Current used activity &

Level of reduction point  0.000

ACTIONS >»
Select allocation

Allocate automatically

3. Once the linear calculation has been executed, results are available. There are fundamentally two
types of results available after an IRS analysis:

The results of the reduced model are automatically expanded to the original mesh and are
accessible through standard output. This will not be detailed here as it is the same as what has
been explained in the previous chapters.
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- Some dedicated results, coming directly from the reduced model, are available in “Results”
workstation, and « Summary Storey Results » . This typically gives information about the
masses, displacements and accelerations at each storey in the reduced model.

E SUMMARY STOREY RESULTS
A = &
B® s CE YW o g eSS @ M« & e A
@il ﬁ

- Other results can be displayed via the « Results » workstation as « Detailed Storey Results »
this menu can be used to display results from the full mesh analysis. It may be used for results
from any linear analysis, with or without dynamic analysis, with or without IRS analysis. It provides
results in all supporting members, with easy selection of members per storey. Walls and columns
may be represented on the same drawing. Typical provided results are: internal forces, resultants
per wall or per storey...

DETAILED STOREY RESULTS

= &

21 &
N
B SO T & @ S @ M s ¢ 8

& s

Example 04-1.esa
Open the corresponding project. We are going to apply the principles seen above to this small building.
Step 1: set up the seismic model

e Activate “Dynamic” and “Seismic” functionalities  from the Project data menu.

Project data X

Basic data Functionality Actions UnitSet Protection

GENERAL DETAILED
Property modifiers 4 Dynamics
Model modifiers Modal & harmonic analysis
Parametric input Seismic spectral analysis
Climatic loads Dynamic time-history analysis
Mobile loads 4 Subsoil
Dynamics Soil interaction
Qéahilibs Dad fnuindatinmg charl

» Create mass groups . For this example, we are going to consider 3 mass groups related to 3 static
predefined load cases : self weight, dead load (DL) and live load (LL).

e Create a combination of mass groups
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’ # 7 Combinations of mass groups X ‘
= -fERMFE &« 2 [ Inputcombinations v Y
CM1 Name CM1
Description
4 Contents of combination
MG1[] 1.00
MG2 [-] 1.00
MG3 [] 0.30
New | Insert = Edit | Delete | | Close |

« Define a seismic spectrum . Let’s consider a seismic spectrum with the following parameters :

Seismic spectrum X
10 i 1.00
- # 7 Code parameters X | TTTTT
06
coeff accel. ag 0.061
04 ag - design acceleration [m/s”: 0.600
q - behaviour factor 1.500
| - beta 0.200
i S, Tb, Tc, Td manually? No v H
T Subsoil type A v ) E
Spectrum type type 2 v
irection Horizontal v
Frequency[Hz] Direction
Al 1
1 0.00 Direction factor FS1
S - soil factor 1.000 ‘
2 0.25 |
Tb 0.050 Eequency M
S 0:25 I
4 025 0280 EN 1998-1:2004 - Eurocode ¥
Td 1.200
5 0.25 - o
Sl 0-28 | ok || cancel |
7 0.25 \ 4
=l 0-28 - LCode parameters \
9 0.26 391 0.12 -
10 0.26 3.90 0.12 oK ’ ‘ Cancel ‘
R »
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Create the seismic load cases in X and Y direction in the “Load cases” window:
8 Load cases X
iR e O @b A vY H
Sw Name SX
i Description
= Action type Variable v
:: Load group LG3 v

Load type Dynamic v
Specification Seismicity v
4 Seismic action
Response spectrum FS1 v
Direction X v
Rotation about Z axis [deg] 0-00
Factor X 1
FactorY 0
FactorZ ©
Arralaratian farkar 1
¥ Load cases X
IR ES as O @@ A vy
sw ‘ Name SY
o Description
- Action type Variable v
::(( Load group LG3 v

Load type Dynamic

Specification Seismicity
4 Seismic action
Response spectrum FS1

Direction Y
Rotation about Z axis [deg] 0
Factor X 0
FactorY 1
FactorZ ©
1

Acceleration factor

Refine the mesh. For this example, we set the mesh as follow:

# ' Mesh setup

Name MeshSetupl

Average number of 1D mesh elements on straight 1D members 1
Average size of 1D mesh element on curved 1D members [m] 1.000
Average size of 2D mesh element [m] 0.500
Connect members/nodes
4 Advanced mesh settings
4 General mesh settings
Minimal distance between definition point and line [m] 0.00

Choose the number of frequencies which have to be calculated (Solver setup ). We chose 10

values .
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Step 2: activate the option “Use IRS (Improved Redu

ced Model)”

Activate the option “Use the Improved Reduced Model” from the “Solver Setup” .

B " Solver setup

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
P General
P Effective width of plate ribs
P Initial stress
4 Dynamics
Type of eigen value solver Lanczos
Number of eigenmodes 10
Use IRS (Improved Reduced System) method
P Mass components in analysis
P Soil
B (& & OK Cancel
Step 3: define storeys
Define the storeys from the input panel:
Storey manager X
)
n
“9om———
n
RELCS
[
n
Y X
00—
Name Z-Bottom [m] Height [m] Repetition Z-Top [m] Description
1 FL1 0.000 4.500 1 4.500
2 FL2 4.500 4.500 1 9.000
3 FL3 9.000 4.500 1 13.500
4 FLa 13.500 0.000 1 13.500
Insert Delete Inserting point X 0.000 m Y 0.000 m OK Cancel
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The levels are shown graphically. If you select a storey level, you can adapt its properties from the Properties
panel:

“-...__\-‘

+ 13,50@.,_\

A

RAVAV.

FL3

+9,ooo,,\\

FL2

7 —~—
><:::><
<

[
e
e

s |

L |- ‘, ) \. o >< ] /

\ SN S

A
[NERYARY

L

>

STOREY (1)

Name
Description
Z-Bottom [m]

Height [m]

!

Filtered allocation of Entities

Allocation type  All inside Vv
Include members on top

Include members on bottom

a0

Current used activity

S
o
=1
=1

Level of reduction point

ACTIONS >»
Select allocation

Allocate automatically

You can check if the supporting members of the building are properly allocated to storeys using the ‘Filtered
Allocation of Entities’ property.

Optionally, R-nodes may be placed at any level in each storey. The storey property “level of reduction point”

allows selecting the exact height of the reduction point for each storey separately. O corresponds to the bottom
of the storey, 1 to the top of the storey.
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Step 4: perform the linear calculation and check th e results
Step 5: summary storey results
There are 3 types of results: storey data, displacements and accelerations.

- Storey data:

Storey data displays for each storey the total mass and the coordinates of the mass center. It is only
available with mass combinations.

T -

RESULTS (1) A X

'[j Report preview

FL1

+0AOOK‘

+13.50k ol > Name Summary storey result
/ Type of loads Mass combinations v
L3 \ >< Mass combinations  CM1/1 - 2.65 v
Selection  All storeys v
+9‘00K 20, > Drawvalues @Y
\ / Draw units (Vj
Resulttype Storey data v
FL2
ACTIONS >»
45 ] B Refresh Fs
+4.
OK< > ® Resultstable

1L

Summary storey result
Storey data:

Eigen solution

Selection: All

Mass combinations : CM1/1 - 2.65

Name M X6 Y6 26
[t] [m] [m] [m]
FL1 135] 4157] 7.704| 1.250
FL2 148.0| 5663| 6350| 4.500
F3 148.0| 5663 6.350| 5.000
FL4 107.8| s769] 6240 13343

- Displacements & accelerations:

Displacements & Accelerations are available for eigenmodes and seismic load cases. The values of
displacement & acceleration components are given at the mass centre of each storey.

Results for mass combinations are raw, normalized results from modal analysis, without effect of
response spectrum.

Results for seismic load cases are values after modal superposition.
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—— =
3 )e*/ T \ RESULTS (1) N X
+13'SQO\ Oom"'\h- > ‘ Name Summary storey result
[ / Typeof loads Load cases N
FL3 \::/ Load cases SX v
/ g \“\ Selection  All storeys v
+9-00°\< Minl > Extreme Member v
'\ / Draw values (O
FL2 >::/ Draw units
\ Resulttype Displacements v
+4-500\</5'79~0"1m-_ \> Values u_x v
— ] v ADDITIONAL VALUES
FL1 l.le~g, \\/ w QD
¥ | wz OO
- Q_x (D
+0A00C)\1 ‘;:‘m & / oy O
oz OO
) LIMIT VALUES
Summary storey result
Storey Displacements:
Linear mlculetion, Bxdreme: Member
Selection: Al
Load cases : 5X
Name Uy Uy u; P Py L1
[mm] [mm] [mm] [mrad] [mrad] [mrad]
FL1 1,1e-01 | 2,4e02| 6,2e05| 1,3e03| 24e03| 2,403
FL2 57e-01| 1,7e-01| 52e02| 9,1e-03| 4,8e03| 9,0e-03
FL3 1,7e+00| 5,2e01| 7,1e02| 1,4 02| 6,8203| 2,502
FL4 3, 0e+00 9.2e-01| 91e-02 1,502 7,2¢03| 4.3e02

Using the option ‘Additional values’ in the properties windows you can display more components:

+13.5Q0\

A

AN

FL3

+9.00Q__| <

FL2

+4.50Q__ | <

FL1

JAWE!

/\

¥40 m/sn

+0.0C\47\L::‘..H

\' \\// \V/ V

-
\ RESULTS (1) (AR
Name Summary storey result
Typeof loads Load cases v
Load cases SX v
Selection All storeys v
Extreme Member v
Draw values
Draw units
Resulttype Accelerations v
Values Ax v

¥ ADDITIONAL VALUES
Ay
Az
a_x

ay

LIMIT VALUES

Av min [m/eA2]

: 90800
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Step 6: detailed storey results

Typical provided results are: internal forces, resultants per wall or per storey...

Mainly two types of results are available here:

- Internal forces in supporting members

The result can be displayed on different section levels:

Diagram
Draw diagram

Display total value

0 Top (section at the top of each storey)
o Middle (section at mid-height of the each storey)
0 Bottom (section at the bottom of each storey)
0 User defined
o
RESULTS (1) (ARD
Name Detailed storey result ]
Typeof loads Load cases v
Load cases SX \
Selection Single storey v
Storey FL1 v
Section level Top v
Filter No v
System Principal v
Extreme Global v
Drawvalues @Y
Draw units (“:
Location Innodes, avg. on macro v/
Resulttype Internal forces v
Valueson beams N v
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Detailed storey result
Linear calculation, Extreme: Global, System: Principal

Selection: FL1

Load cases : SX

Columns:

Name Storey x \' z N Vy Vz Mx My Mz
[m] [m] [m] [kN] [kN] [kN] [kNm] [kim] [klm]

B22 FL1 6.000 6.000| 4.500| 14.02| 0.26| 1.05 0.03 1.94 0.43
B37 FL1 12.000 0.000 | 4.500 687| 025| 0.56 0.04 0.54 0.29
B40 FL1 6.000 12.000 | 4.500 497 | 0.17 1.02 0.04 1.75 0.15

Walls:

Name Storey x Yy z nx ny ey my my Myy Vx vy
[m] [m] [m] [kN/m] [kN/m] [kN/m] [kNm/m] [kNm/m] [kNm/m] [kN/m] [kN/m]

4 FL1 12.000 | 10.000| 4.500 054 2.18 28.02 0.08 0.43 0.05 0.19 0.30
S7 FL1 0.000 8.000 | 4.500 2.87 $8.55 1.94 0.03 1.59 1.00 0.35 4.92
S15 FL1 1.500 0.000 | 4.500 3.74 45.62 52.97 0.02 0.11 0.22 0.48 0.08
S15 FL1 0.000 0.000 | 4.500 1286| 323.53 7.66 0.48 0.64 0.04 1.84 1.88
S15 FL1 2.000 0.000 | 4.500 0.92 4664 53.10 0.03 0.09 0.26 0.50 0.14
4 FL1 12.000 | 11.000| 4.500 432 .74 20.59 0.09 0.41 0.02 0.27 0.23
S7 FL1 0.000 8.500 | 4.500 3.04 4538 3.22 0.05 0.14 0.66 0.03 1.58
S15 FL1 3.500 0.000 | 4.500 7.96 301.84 7.28 0.22 1.90 0.90 2.20 5.60
S7 FL1 0.000 | 10.500| 4.500 0.50 64.10 10.38 0.07 0.53 0.37 0.10 0.08
S10 FL1 2.000 12.000 | 4.500 32.69 232.94 2341 0.03 3.54 1.61 1.16 11.18

- Resulting forces (by member)

Location = by member: compute the resulting forces are computed for each wall member separately.

()

RESULTS (1)

"N

X

Type of loads

Name Detailed storey result

Load cases SX

Selection

Section level

Draw values
Draw units
Location

Result type
Member grouping

Extreme

Load cases

Single storey

Storey FL1

Filter No

Bottom

System  Principal

Global
o
O
In nodes, avg. on macro
Resulting forces

per member

Values F_x

Resulting forces in 1D members (columns) are identical to internal forces in 1D members.

vV

Vv

vV

Resulting forces in 2D members (walls) compute the resultant at the centre of each wall, according
to a dedicated local coordinate system, regardless of the System output setting. The coordinate
system that is used is the same as the LCS of a vertical rib placed in the middle of the wall. It is also
the same coordinate system that is used for integration strips.

e

In this way, resulting forces in

~

in columns on a single drawing.
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The local Z axis is identical to the Z LCS of the wall.

The local X axis is vertical, upwards.

Y=2Z"X

walls can be easily displayed together, consistently with internal forces
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Resulting forces (by storey)

Location = by storey: the resulting forces are computed for each storey, considering all the supporting
members at once; 1D (columns) and 2D members (walls) are taken into account together

-
] RESULTS (1) A X
Name Detailed storey result
Typeof loads Load cases v
Load cases SX v
Selection  Single storey v
Storey FL1 v
Section level Bottom v
Filtler No v
System GCS v
Extreme Global v
Draw values
Draw units
Location Innodes, avg. onmacro v/
Resulttype Resulting forces v
Member grouping per storey v
Values F_x v
Total vertical forces in all storeys:
= | RESULTS (1) N X
o
+1 S.SQK o > Name Detailed storey result
I Typeof loads Load cases v
FL3 \>< : ></ Load cases SW v
/ -\ Selection  All storeys v
+9.0 < > Section level  Middle v
| Filter No N
= L System  GCS v
i />< ><.\ Extreme Member v
+4.5 < : > Draw values
Draw units
T / Location Innodes, avg. on macro
el ‘/t Resulttype Resulting forces v
+0'00%\ Member grouping per storey v
- / Values F_z v
| » ADDITIONAL VALUES
LIMIT VALUES
& F_xmin [kN] 0.00
Detailed storey result

Linear calculation, Extreme: Member, System: GCS

Selection: All

Load cases : SW
Resulting forces per storey

Name Storey x V' z Fx F | Mx My Mz
[m] [m] [m] [kN] [kN] [ k] [kNm] [kNm] [khm]
FL1 4.507 | 7.54% 2.250| 0.41| 092 | -2938.11 | 3281.44| 3163.40 5.24
FL2 4.507 | 7.545 6.750| -1.00 | 0.65 | -1904.18 | 2187.60| 2109.18 -0.53
FL3 4507 | 7.545| 11.250| -1.18| 0.69 -870.00 | 1093.34 | 1054.57 -1.19
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4.3. Accidental eccentricity (accidental torsion)

The accidental eccentricity accounts for inaccuracies in the distribution of masses in the structure. Design
codes usually take it into account as an additional eccentricity that is defined as a fraction of the size of the
structure.

In the Eurocode 8, the accidental eccentricity for a given floor is defined as 5% of the width of the floor
perpendicularly to the direction of the acting seismic action.

In SCIA Engineer, using the IRS condensed model allows introducing accidental eccentricity easily, since the
condensed model uses only one R-node per storey. The accidental eccentricity may be taken into account
either as real mass eccentricity or as additional torsion actions (simplified method according to the design
codes).

However, SCIA Engineer uses the simplified method using additional torsion moment.

Accidental eccentricity is added through static loading (acc. EN 1998-1 4.3.3.3.3)
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Example 04-2.esa

In SCIA Engineer, the accidental torsion can be accounted for in a s

eismic project using the IRS method .

Open the Load cases window and select one type of Accidental eccentricity:

B’ Load cases

iR EER a2 O =B A

A Name SX

" Description

l;( Action type Variable
LG3

SY Load group

SX_AE - Accidental ec...
SY_AE - Accidental ecc...

4 Seismic action

Response spectrum FS1
Direction X

Rotation about Z axis [deg] 0-00
Factor X 1
FactorY O
FactorZ ©

Acceleration factor 1

Overturning reference level [m] 0.000

Equivalent lateral forces

ELF method Disabled

Accidental eccentricity

Method Accelerations from modal superposition

Load type Dynamic

Specification Seismicity

A

Eccentricity
Modal superposition

Type of superposition

Unify eigenshapes
Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
Signed results

Use dominant mode

Master load case None

Combination of mass groups CM1

Actions

New Insert Edit Delete

Disabled
Linear distribution of accelerations
Distribution of accelerations from eigenshape

Accelerations from modal superposition

o>

Delete all loads

Copy all loads to another loadcase  >>>

Close

The following methods are available for calculation of AE moments:

Accelerations from modal superposition

96

Linear distribution of accelerations (EN 1998-1 4.3.3.3.3 and formula (4.11) )
Distribution of accel. from eigenshape (EN 1998-1 4.3.3.3.3 and formula (4.10) )
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Once the accidental eccentricity is selected, a new AE load case and also a new load group are automatically

created:

B Load cases ¥
HiEFER a2 O wld A v Y
sW Mame SX_AE
DL Description Bccidental eccentricity for SX
;; Action type Variable
SX_AE
Sy Load group =A_ -
\SK_AE - Accidental ec... | Load type Static
SY_AE - Accidental ecc... Specification Seismic accidental eccentricity
Duration Short
Master load case SK
Actions
Delete all loads ===
Copy all loads to another loadcase ===
Mew Inzert Edit Delete Cloze
B Load groups w
HEEFE «a» O wlB A vy

LG1
LGz
LG3

ISH_AE

SY_AE

Mew Insert

Edit

Mame SK_AE

Relation Exclusive

Load Seismic Accidental Eccentricity

Delete

Close
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Chapter 6: ANNEX A - EARTHQUAKE MAGNITUDE

To assess the magnitude of earthquakes, a scale to describe the energy released during an earthquake was
developed by Richter in the 1930s. This is named the Richter scale and it is the most common scale used
today to describe earthquakes [26].

The magnitude of an earthquake on the Richter scale is determined by a so-called Wood-Anderson

seismograph maximum amplitude, where M = log(a), and a is the maximum amplitude [um] at a 100 km
distance from the epicentre.

The seismic action on buildings cannot be described by the Richter scale magnitude and this may not be used
in the design. However, Housner in 1970 developed empirical relationships between the magnitude, the
duration and the peak ground acceleration to be used in design:

Magnitude on the Peak ground Duration (s)
Richter scale acceleration (% Q)
5,0 9 2
55 15 6
6,0 22 12
6,5 29 18
7,0 37 24
7,5 45 30
8,0 50 34
8,5 50 37
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Chapter 7: ANNEX B - NUMERICAL DAMPING VALUES

In this annex, some numerical values for structural damping are given.

7. EC8 — Part 6
EC8 part 6 (ENV 1998-6:2003 Annex B) suggest the following values for the damping ratio:

Structural material Damping ratio &
Steel elements 1% - 4%
Concrete elements 2% - 7%
Ceramic cladding 1,5% - 5%
Brickwork lining 3% - 10%

7.2. EC1 - Part 2-4

Other values for damping are suggested by EC1 — part 2-4 (ENV 1991-2-4: 1995 Annex C).
The fundamental logarithmic decrement d is given by:
d = ds + da + dd
Where:
- ds: fundamental structural damping
- da: fundamental aero dynamical damping
- da: fundamental damping due to special devices

The structural damping is given by:
dS =4dq.Nq + b1

ds = Smin
Where:
- 1, fundamental flexural frequency.
- a4, by, 84 parameters given in the following table for different structural types.

Structural type a; b, 8 min
Reinforced concrete buildings 0,045 0,030 0,080
Steel buildings 0,045 0 0,050
Mixed structures : concrete + steel 0,080 0 0,080
Reinforced concrete towers 0,050 0 0,025

Lattice steel towers 0 0,030 0
Reinforced concrete chimneys 0,075 0 0,030

Prestressed steel cable 0 0,010 0

Unlined welded steel stacks 0 0,015 0

Steel stack with one liner or thermal insulation 0 0,025 0

Steel stack with two or more liners 0 0,030 0

Steel with brick liner 0 0,070 0

Coupled stacks without liner 0 0,015 0

Guyed steel stack without liner 0 0,040 0

Welded 0 0,020 0

Steel bridges High resistance bolts 0 0,030 0

Ordinary bolts 0 0,050 0

) Prestressed without cracks 0 0,040 0

Concrete bridges With cracks 0 0,100 0

) Parallel cables 0 0,006 0

Bridge cables Spiral cables 0 0,020 0
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For example, for a steel building with first frequency of 3Hz, the logarithmic decrement is:

0,045*3 + 0 = 0,135 (> 0,05)

7.3. Reference [22]

Other values for the logarithmic decrement are suggested by the reference [22]:

Structural material

Logarithmic decrement

Steel (welded) 0,025
Reinforced or prestressed concrete 0,056
Brickwork 0,25
Wood 0,13

In this reference, preliminary formulas can also be found for aerodynamic damping and damping caused by

the foundation.

104
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Chapter 8: ANNEX C - MANUAL CALCULATIONS SPECTRAL A NALYSIS

8.1. Spectral analysis of 3-2 example (example C-1)

In this paragraph, the seismic results of SCIA Engineer are calculated manually to give a clear understanding
of the applied formulas. All formulas can be found in the paragraph “Calculation Protocol” of this chapter.

The reference project is not completely the same as the one described in example 3-2. The differences will be
shown first before starting the manual calculation.

8.1.1 Seismic load case

The properties which have been used in the seismic load case can be seen here:

®° Load cases X

CET13- LRS- T
LC1 - Deal load | Name LC2
LC2 - SX

|=
=
<

-«

Description SX
Action type Variable v
Load group LG2 ¥ e
Load type Dynamic v
Specification Seismicity v
4 Seismic action
Response spectrum Manuel Yo
Direction X v
Rotation about Z axis [deg] 0-00
Factor X 1
FactorY ©
FactorZ ©
Acceleration factor 0.35
Overturning reference level [m] 0.000

4 Equivalent lateral forces

ELF method Disabled v
4 Accidental eccentricity
Method Disabled v
4 Modal superposition
Type of superposition SRSS v
Unify eigenshapes

Filter on total mass ratio
Filter on minimal mass ratio
Use residual Mode
4 Signed results
Use dominant mode
Master load case None v

Combination of mass groups CM1 v

Actions
Delete all loads >>>
Copy all loads to another loadcase  >>>
New | Insert | Edit Delete Close

A different acceleration factor has been used. This reduces the accelerations given by the spectrum.
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8.1.2 Spectrum

A manual seismic spectrum is used:

5 Seismic spectrums X
HEEBFE «» O @B A v Y
Manuel
m/s"2
14_
125
Name Manuel 12] R £
Type drawing Period v
4 f[Hz]; T[s]; al... 10
1 [Hz,s,m/s"2] 0.33/3.03/0.466 §i
2 [Hz,5,m/s"2] 0.50/2.00/0.560 08
3 [Hz,s,m/s"2] 1.00/1.00/0.890 1
4 [Hz,5,m/s"2] 1.49/0.67/1.165 06
5 [Hz,5,m/s*2] 1.67/0.60 { 1.250 7
6 [Hz,5,m/s"2] 6.67/0.15 [ 1.250 4
7 [Hz,5,m/s"2] 100.00/0.01/1.0( 1
8 [Hz,s5,m/s"2] 1000.00/0.00 /0. 05
s
0.0
mlo T T T T T T J
=} v S ) = w = 2
[=3 (=3 — L o o™ o o
New Insert Edit Delete | oK

8.1.3 Finite element mesh and solver setup

The finite element mesh has not been refined:
7 Mesh setup

Name MeshSetupl
Average number of 1D mesh elements on straight 1D members 1
Average size of 1D mesh element on curved 1D members [m] 0.200
[ Average size of 2D mesh element [m] 1.000
\ Connect members/nodes

Qatiim far rannactinn Af ctriirtiiral antitiac

The solver also has not been changed to neglect shear deformations.
B Solver setup

Name SolverSetupl
Specify load cases for linear calculation
4 Advanced solver settings
4 General
Neglect shear force deformation ( Ay, Az>> A)
Neglect shear center eccentricity
Type of solver Direct
Minimal number of sections on member 10
Warning when maximal translation is greater than [nm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
P Initial stress
4 Dynamics
Type of eigen value solver Lanczos
Number of eigenmodes 2
Modal mass matrix Diagonal
Use IRS (Improved Reduced System) method
P Mass components in analysis
P Soil

106
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8.2. Manual calculation of 3-2 example (example C-1)

8.2.1 Verification of modal participation factors
First, the Modal Participation Factors of the Eigen Frequency Calculation Protocol  are verified.

As shown in the Deformation of Nodes, the normalized modal shapes for both modes were the following:

Displacement of nodes Displacement of nodes
Modal shapes are normalzed, so that the generalzed ¢ Modal shapes are normalzed, so that the generalzed n
Mass combination: CM1/1 - 0.53 Mass combination: CM1/2 - 3.43
Extreme: Node Extreme: Node
Selection: Al Selection: All
Name Case Ux Uz Name Case Ux Uz
[mm] [mm] [mm] [mm]
N1 CM1/1 - 0.53 00| 0.0 N1 CM1/2 - 3.43 00| 0.0
N2 CM1/1 - 0.53 61| 00 N2 CM1/2 - 3.43 25.7] 0.0
N3 CM1/1 - 0.53 -20.8 0.0 N3 CM1/2 - 3.43 30.5 0.0
Ne loMy1-053 | 391] 00 NG cMy2-343 | -202] 0.0
0,039111 —0,020233
{0} = 0,020803 (0} = 0,030451
$1J=10,006128 2 0,025755
0 0

Participation factor:
Yigy = (di}" * {m}

Yx,1) = 0,039111 = 500 + 0,0200803 * 500 + 0,006128 * 500 = 33,021
Yx,2) = —0,020233 * 500 + 0,030451 = 500 + 0,025755 * 500 = 17,984

Effective mass:
Micet,) = Vi)

My 1y = (33,021)% = 1090,39
Mx,ef,(z) = (17.984)2 = 323,42

Participation mass ratio:

Lo My et )
w0 My ot
Ly = =039 _ 7269
*M 75004+ 5004500
323,42
=0,2156

Ly iy =
k) 7 500 + 500 + 500

These results correspond to the results obtained by SCIA Engineer.
They can be found in SCIA Engineer in the Calculation protocol (Eigen frequency)

Relative modal masses

1 3.30085 1.90 0.53] -33.0211 0.0000 0.0000 0.7269 0.0000 0.0000 0.0000 0.2720 0.0000
2 21.5274 0.29 343 17.9865 0.0000 0.0000 0.2157 0.0000 0.0000 0.0000 0.5286 0.0000
0.9426 0.0000 0.0000 0.0000 0.8006 0.0000
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8.2.2 Details of the seismic calculation

Next, the details of the seismic calculation found in the Calculation Protocol for the Linear Calculation are
verified:

Freq. Damp ratio Damp coef. Wi/Wtot Sax Say Saz G(3) Fx Fy Mx My
[Hz] [-] [m/s?] [m/s?] [m/s?] [-] [kN] [kN] [kNm] [kNm
1 0.53 0.05 1 0.73 0.207 0.000 0.000| -0.63 0.23 0.00 0.00 -2.26
2 3.43 0.05 1 0.22 0.438 0.000 0.000 0.02 0.14 0.00 0.00 -0.41
Level= 0.00 0.54 0.27 0.00 0.00 2.29

The spectral acceleration Sax for both modes is calculated using the defined seismic spectrum.

The spectrum for ground type B with a behaviour factor q = 2 gives the following values for Sa(T)/a:

Frequency[Hz] Period[s] Acceleration[m/s*2]
1 0.33 3.03 0.47
2 0.50 2.00 0.56
3 1.00 1.00 0.89
4 1.4 0.67 1.17
5 1.67 0.60 1.25
6 6.67 0.15 1.25
7 100.00 0.01 1.00
8 |1000.00 |0.00 0.00
* 0.00 0.00 0.00

The first mode has a period T1 of 1,9036 s => Sq¢(T1)/a = 0,5918 m/s?2
The second mode has a period T2 of 0,2920 s => S4(T2)/a = 1,25 m/s?

In this example, the coefficient of acceleration a was 0,35
=> Sax,1) = 0,5918m/s2 * 0,35 = 0,2071 m/s?
=> Sax,2 = 1,25m/s2 * 0,35 = 0,4375 m/s?

These results correspond to the results obtained by SCIA Engineer. The small deviation is due to the fact that
SCIA Engineer uses more decimals. In the further analysis, the spectral accelerations of SCIA Engineer are
used.

Mode coefficient:

- Sak * Yk0)
k@G) — 2

W)

0,2019 % 33,021

Gy(p) = —————"— = 10,6119
*m (3,3007)2

. _04380«17984
*@ T (21,5192)2

These results correspond to the results obtained by SCIA Engineer.
The necessary intermediate results are calculated so the response of each mode can now be obtained.

First, for each mode, the lateral force in each node can be calculated. These lateral forces can then be used
to calculate the base shear and overturning moment.

108 MJA — 2024/02/29



Mode 1:

Lateral force in node i:
Fikm = Mikg) * Sak * Y@ * Pikg)

0,2019m
Fix) = 500kg * ——— » 33,021  0,039111 = 130,38N
0,2019m
Fax = 500kg  ——— * 33,021 « 0,020803 = 69,35N
0,2019m
Fax) = 500kg * ——— » 33,021 « 0,006128 = 20,43N
Fl,X,(l) = ON

Base shear force:
Frg = Z Fikq)
i

Fy 1) = 130,38N + 69,35N + 20,43N = 220,129N = 0,2201kN
Overturning moment in node i:

Mik,) = Fikg) * Zi

M,y 1) = —130,38N * 12m = —1564,50Nm
My 1) = —69,35N * 8m = —554,77Nm
M,y = —20,43N * 4m = —81,71Nm

Ml.y,(l) =0N.m

M) = Z Mik,q)
i

Overturning moment:

My 1y = —1564,50Nm — 554,77Nm — 81,71Nm = —2200,89Nm = —2,2009kNm

Note:

In this mode, all lateral forces in the nodes are oriented the same way. The lateral loads in the nodes are in
this case oriented in the negative X-direction so the Base Shear Force is oriented in the positive X-direction.
The lateral loads in the nodes thus produce a negative Overturning Moment around the Y-axis. An example of

this principle can be found in reference [26].

However, as stated in the previous chapters, the signs have no absolute importance

amplitudes always occur on both sides of the equilibrium position.

since vibration
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Mode 2:

Lateral force in node i:
Fik® = Mikg) * Sak) * Y * Piko)

0,4380m
Fax(2) = 500Kg ¥ ———— * 17,984 * —0,020233 = —79,69N

0,4380m
Fas(z) = 500kg * ——— = 17,984  0,030451 = 119,93N

0,4380m
Fan () = 500kg * ———— 17,984 + 0,025755 = 101,44N

Fl,X,(Z) = ON

Base shear force:
Frg = Z Fikq)
i

Fy@) = —79,69N + 119,93N + 101,44N = 141,68N = 0,1417kN

Overturning moment in node i:
Mik,i) = Fikq) * zi
Myy ) = —79,69N % 12m = —956,25Nm
My 2 = —119,93N * 8m = —959,45Nm

M,y 2) = —101,44N * 4m = —405,74Nm
Ml,y,(z) = O0ON.m

Overturning moment:
M) = Z Mik,q)
i

My (2) = 956,25Nm — 959,45Nm — 405,74Nm = —408,94Nm = —0,4089kNm

To obtain the global response, the modal responses need to be combined. In this example the SRSS-method

was used:

F, = J (Few)” + (Fy)” = V/(0,2201kN)? + (0,1417kN)? = 0,2618kN

M, = \/ (My,1))° + (M ()" = /(=2,2009kN)? + (—0,4089kN)? = 2,238kN. m

These results correspond almost exactly to the results obtained by SCIA Engineer. We will show them again:

b

0.00 -2.26

= Damp Damp coe
1 0.53 0.05 1 0.73 0.207 0.000 0.000]| -0.63 0.23 0.00
2 3.43 0.05 1 0.22 0.438 0.000 0.000 0.02 0.14 0.00 0.00 -0.41
Level= 0.00 0.54 0.27] 0.00 0.00 2.29

As specified in the theory, these same principles can now be used to calculate the displacements and
accelerations for each mode. These modal responses can then be combined again to obtain the global

displacements and accelerations of the structure.
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Mode 1:

Displacement in node i:
Uik () = G Pika)

Ugx(1) = 0,6119 % 0,039111 = 0,02393m = 23,93mm

Usy (1) = 0,6119 * 0,020803 = 0,01273m = 12,73mm

Uz x 1) = 0,6119 % 0,006128 = 0,00375m = 3,75mm
Uy (1) = Omm

Acceleration in node i:
. — 2
Uikg) = ) Gy Pk

gy (1) = 3,3007% x 0,6119 * 0,039111 = 0,26073m/s? = 260,73mm/sz

Az (1) = 3,3007% x 0,6119 * 0,020803 = 0,13868m/s? = 138,68mm/sz

azx(1) = 3,3007% % 0,6119 * 0,006128 = 0,04085m/s? = 40,85mm/s?
ayx(1) = 0mm/s®

Mode 2:

Displacement in node i:
UikG) = Grg)- Piko)

Uy, (2) = 0,0170 x (—0,020233) = —0,00034m = —0,34mm
U3y 2) = 0,0170 % 0,030451 = 0,00052m = 0,52mm
Uy x2) = 0,0170 * 0,025755 = 0,00044m = 0,44mm
Uy x2) = Omm

Acceleration in node i:
. — 2
Uikg) = ) G gy Pk

A4y (2) = 21,51922 % 0,0170 = (—0,020233) = — 0,15928m/s? = —159,28mm/s?
Azx2) = 21,51922 % 0,0170 = 0,030451 = 0,23972m/s? = 239,72mm/s?
B2y = 21,5192% % 0,0170 * 0,025755 = 0,20275m/s? = 202,75mm/s?

3352 = 0mm/s®

To obtain the global response, the modal responses need to be combined. In this example the SRSS-method
was used.

Displacements:

Upy = J (Uaxn)” + (Wax@)’ = V(23,93)2 + (=0,34)% = 23,93mm

Ugy = \/ (Usxy)” + (Wsny)” = V(A2,73)% + (0,52)2 = 12,74mm

Upy = \/ (Uzxy)” + (Uan)” = V(3,75)% + (0,44)2 = 3,78mm

uLX = 0

Accelerations:

A4 = J (aaxw)” + (ax@)’ = V(260,73)% + (—159,28)2 = 305,53mm/s>

a5, = \/ (a30)” + (a3x02))" = +/(138,68)2 + (239,72) = 276,94mm /s>

Ay = \/ (azx1)” + (azx()” = V(40,85)2 + (202,75)? = 206,82mm /s’

a;x = Omm/s?
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In SCIA Engineer, in 32-bit version and v16 post-processing environment, a specific result menu Seismic
Detailed was designed to view these modal displacements and accelerations.

In the Properties Window, the options for viewing the modal results can be set:

Tree v O X

Properties v 3 X
RSN - Reruks_ X Seismic detailed (1) BAY: R A
F¥ Displacement of nodes ST &
e o | eimic detited
€A 3D stress Selection All =
& Supports Type of loads Load cases -
= Beams Load cases LC2 - Séisme X -
= ™ Dynamics P— No .
ol Modalresuts  Acceleratons :
I Seismic detailed Evaluation for Sum -
[ Bill of material ‘ Values Deformed mesh v
t& Calculation protocol Extreme No -

- Inthefield « Load Cases », a seismic load case can be selected.
- The filed « Modal results » allow choosing between the displacements or accelerations.

-« Evaluation for » is used to specify which results need to be shown: the results for a specific
Eigenmode , the results for All Eigenmodes or the global, Summarized results.

The results for each mode and the summarized results are shown on the next pages for both the displacement
and the accelerations.

Displacements:

Mode 1:

Seismic detailed

Linear calculation, Extreme : No
Selection : All

Load cases : LC2

Modal results : Displacements
Evaluation for : Eigenmode 1

Node X Y z Ux Uy Uz Fix Fiy Fiz
[m] [m] [m] [mm] [mm] [mm] [mrad] [mrad] [mrad]
N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
N2 0.000 0.000 4.000 3.7 0.0 0.0 0.0 17 0.0
N3 0.000 0.000 8.000 12.7 0.0 0.0 0.0 2.6 0.0
N4 0.000 0.000 12.000 23.9 0.0 0.0 0.0 29 0.0
Mode 2:

Seismic detailed

Linear calculation, Extreme : No
Selection : All

Load cases : LC2

Modal results : Displacements
Evaluation for : Eigenmode 2

N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
N2 0.000 0.000 4.000 0.4 0.0 0.0 0.0 0.1 0.0
N3 0.000 0.000 8.000 0.5 0.0 0.0 0.0 -0.1 0.0
N4 0.000 0.000 12.000 -0.3 0.0 0.0 0.0 -0.3 0.0
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Summarized:

Seismic detailed

Linear calculation, Extreme : No
Selection : All

Load cases : LC2
Modal results : Displacements
Evaluation for : Sum

N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
N2 0.000 0.000 4.000 3.8 0.0 0.0 0.0 1.7 0.0
N3 0.000 0.000 8.000 12.7 0.0 0.0 0.0 2.6 0.0
N4 0.000 0.000 12.000 23.9 0.0 0.0 0.0 2.9 0.0
Accelerations:
Mode 1:
Seismic detailed
Linear calculation, Extreme : No
Selection : All
Load cases : LC2
Modal results : Accelerations
Evaluation for : Eigenmode 1
Case Node X Y z Ax Ay Az Alphax Alphay Alphaz
[m] [m] [m] [mm/s2] [mm/s2] [mm/s2] [mrad/s2] [mrad/s2] [mrad/s2]
LC2 N1 0.000 0.000 0.000 i i 0.0 0.0 0.0 0.0
LC2 N2 0.000 0.000 4.000 40.8 0.0 0.0 0.0 18.8 0.0
LC2 N3 0.000 0.000 8.000 138.6 0.0 0.0 0.0 28.6 0.0
LC2 N4 0.000 0.000 12.000 260.7 0.0 0.0 0.0 314 0.0
Mode 2:
Seismic detailed
Linear calculation, Extreme : No
Selection : All
Load cases : LC2
Modal results : Accelerations
Evaluation for : Eigenmode 2
Case Node X Y Z Ax Ay y.V Alphax Alphay Alphaz
[m] [m] [m] [mm/s2] [mm/s2] [mm/s2] [mrad/s2] [mrad/s2] [mrad/s2]
LC2 N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
LC2 N2 0.000 0.000 4.000 202.9 0.0 0.0 0.0 57.1 0.0
LE2 N3 0.000 0.000 8.000 239.9 0.0 0.0 0.0 =51.2 0.0
1€2 N4 0.000 0.000 12.000 -159.4 0.0 0.0 0.0 -123.6 0.0
Summarized:

Seismic detailed

Linear calculation, Extreme : No
Selection : All

Load cases : LC2
Modal results : Accelerations
Evaluation for : Sum

Az Alphax Alphay Alphaz
[mm/s2] [mrad/s2] [mrad/s2] [mrad/s2]
LC2 N1 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0
LC2 N2 0.000 0.000 4.000 206.9 0.0 0.0 0.0 60.1 0.0
LC2 N3 0.000 0.000 8.000 2771 0.0 0.0 0.0 58.6 0.0
LC2 N4 0.000 0.000 12.000 305.5 0.0 0.0 0.0 127.5 0.0
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In 64-Dbit version, we have only the results of displacements — sum:

Displacement of nodes

Linear calculation
Load case: LC2
Extreme: Node

Selection: All

Name Case Ux
[mm] [mm] [mrad] [mm]

Uz

<,

N1 LC2 0.0 0.0 0.0 0.0
N2 LC2 3.9 0.0 1.8 3.9
N3 LC2 13.1 0.0 2.7 13.1
N4 LC2 24.6 0.0 3.0 24.6

When comparing the results of the manual calculation and those obtained by SCIA Engineer, it is clear that

both calculations correspond.

As specified in the theory, when using the CQC-method , a damping spectrum needs to be defined. To illustrate
this, the above example is calculated again, but now using the CQC-method for the modal combination.
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Chapter 9: ANNEX D - MISSING MASS IN MODES

As mentioned before, the sum of the effective modal masses for the modes taken into account must amount
to at least 90% (EN 1998-1-1 art.4.3.3.3). The user can try to achieve this with the following possibilities:

- Take more natural frequencies into account

- Assign mass more to nodes/connection instead of beams (to avoid local eigenmodes).

The mass which has not been taken into account (for example, if the effective modal mass is 90%, then there
is 10% not taken into account), can be treated in 3 possible different ways in SCIA Engineer:

4 Modal superposition
Type of superposition CQC \ 1
Damping [%)] 5.00
Filter on total mass ratio
Filter on minimal mass ratio

Use residual Mode

The used method is set in each seismic load case and is again displayed in the linear calculation protocol.
Let's take as example that the effective modal mass in a direction is 90%. Then how can the other 10% be
treated?
- Ifthe option « Use residual mode » is not ticked: in this case, the 10% would be ignored. We would
only take into account 90% of the mass of the structure to calculate the effects of an earthquake.
- If the option « Use residual mode » is ticked: in this case, a ‘fictive’ mode corresponding to the
combination of all missing modes can be calculated. But since these missing modes are over
different natural frequencies, the last found frequency will also be the natural frequency of this
mode. In the calculation, the forces in this mode will be calculated in the same way as in the other
modes.

In the following examples the differences are explained in detail.

In these projects the following general principle is used:

First of all, a seismic spectrum is introduced. For this spectrum the modal displacements are calculated for
each mode, in this case there are 2 modes. Afterwards, the displacements are transformed in real load cases.
For these 2 load cases the results of the internal forces and reactions can be asked. According to the specific
analysis method, the results are summed. On that way, one can compare these results with the output of the
internal forces of the seismic load case. This will be done with the following three types of ‘mass in analysis’.
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9.1 Spectral analysis example without « residual mo

de »

Example D-1.esa : spectral analysis without residual mode

If the option ‘Residual mass’ is not ticked, the standard calculation is used. In this case, the participation mass
from all modes is taken into account and the user has to consider the 90% rule of the Eurocode. In other words,
using this method it's important that the total amount of the masses in X, Y and Z are sufficient.

In the example, a structure (3mx6m), made of beams and columns with rectangular cross-sections (beams
cross-section 15*30 except B4 which is 20*60; columns cross-section 15x15 except B3 which is 20*60), is
subjected to dynamic forces. The members are manufactured in C25/30 according to EC-EN. The height of

each column is 5m.

Next, a seismic load case is introduced. The seismic spectrum acts in 3 directions. An acceleration of 2 m/s2

is given in function of the frequency.

The evaluation method SRSS is used together without the option ‘Residual mass’.

The eigen frequency analysis gives the following output:

Deformation for mass combination CM1/1-1,64:

Eigen frequencies
N f © w? T
[Hz] [1/s] [1/s7] [s]
Mass combination : CM1
1 2.05 12.90 166.40 0.45
2 2.39 15.03 225.81 0.42
8g

Dx Dy Dz
[mm] [mrad] [mrad] [mrad]
N1 CM1/1 - 2.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N2 CM1/1 - 2.05 1.27| -15.15 -0.04 0.24 2.02 0.07 | 15.21
N3 CM1/1 - 2.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N4 CM1/1 - 2.05 0.78 | -15.15 0.04 034 0.15 0.08 | 15.17
NS CM1/1 - 2.05 1.27| -15.64 | -12.89 4.27 1.35 0.15 | 20.31
N6 CM1/1 - 2.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N7 CM1/1 - 2.05 0.78 | -15.64 0.00 432 0.27 0.12 | 15.65
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Deformation for mass combination CM1/2-1,90:

B1

Foia
Vi
B3

N1 CM1/2 - 2.39 0.00 0.00| 0.00 0.00 0.00 0.00| 0.00

N2 CM1/2 - 2.39 13.37 | -19.69| -0.01 0.24 -0.61 4.27 | 23.80
N3 CM1/2 - 2.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N4 CM1/2 - 2.39 043 | -19.69 0.02 0.24 -0.08 4.55 | 19.69
NS CM1/2 - 2.39 13.37 9.32 7.12 -2.35 -0.80 473 | 17.78
N& CM1/2 - 2.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N7 CM1/2 - 2.39 0.43 9.32 0.00 -2.40 0.07 3.55 9.33

The masses of the participating nodes (N2, N4, N5 and N7) are needed. The mass is attributed to the end
nodes of each member.

N4
N7
N3
M
N
g N6

Calculation of mass X for N2:
Mass X = 2500kg/m? * [(2,5 * 0,15 * 0,15) + (3* 0,3 * 0,15) + (1,5 * 0,3 * 0,15)]

= 646,875 kg
The total mass matrix is:
Node Mass x Mass y Mass z
(kg) (kg) (kg)

N2 646,875 646,875 646,875

N4 646,875 646,875 646,875

N5 787,5 787,5 787,5

N7 1537,5 1537,5 1537,5

Total 3618,75 3618,75 3618,75

The modal participation factor is calculated as:
Yig) = {01 Ivigy = {di}{m}
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Calculation of y, for mode 1.:

0 0
—0,001267 646,875
0 0
{bxy} = 1 —0,000778 and  {m} = {646,875
—0,001265 787,5
0 0
—0,000777 1537,5
So:
Yx,1) = —0,001267 * 647 — 0,000778 = 647 — 0,001265 = 788 — 0,000777 = 1538
Yx,(1) = —3,514
The participation factor matrix is:
@) Yx Yy Yz
Units (kg¥2) (kg2 (kg'2)
1 -3,514 55,959 10,158
2 20,115 -3,812 5,614

Out of this matrix the effective masses can be calculated:

4,2
Megk) = Yiq)

Calculation of Mer for mode 1 in direction x:

Mef,x,(l) = _3,5142 = 12,346
G) Mef,x Mef,y Mef,z
Units (kg) (kg) (kg)
1 12,346 3131,374 103,182
2 404,603 14,533 31,517
The formula for the participation mass ratio is as follows:
Metk )
Ly = i
S0 Mgk
12,346
k() = 361875~ 00034
() Ly Ly L,
Units ) ) )
1 0,0034 0,8653 0,0285
2 0,1118 0,0040 0,0087

The acceleration response spectrum S

has the constant value of 2m/s2 :

(J) Sx Sy SZ
Units (m/s?) (m/s?) (m/s?)
1 2 2 2
2 2 2 2

Calculation of mode coefficient in each direction:
Sak() * Yk()

GGy = 2
W)
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For example for direction x and mode 1:

Gy = 2 042
O 1664
0 Gs Gy G: G
Units (m*kgl/Z) (m*kgl/Z) (m*kgl/Z) (m*kgl/Z)
1 0,042 0,673 0,122 0,7524
2 0,178 10,034 0,050 0,1941

Now, the lateral forces can be calculated in each node:

As example, this is calculated for node 2 in direction X:

Fnax 1) = 646,875 + 0,7524 = (—0,001267) = 166,4 = —102,6N

= . _ 2
Firg = Mikg) * Uik = Mikq * G * Pixg) * @)

Model
Node Fx (1) Fy (1) F: (1)
(N) (N) (N)
N2 -102,6 1227,3 3,4
N4 -63,0 1227,3 -2,9
N5 -124.7 1541,8 1271,1
N7 -149.6 3010,0 0,2
Total -439,9 7006,3 1271,8
Mode?2
Node Fx (2) Fy (2) F2 (2)
(N) (N) (N)
N2 379,1 -558,3 0,3
N4 12,2 -558,3 0,6
N5 461,4 321,6 245,8
N7 29,0 627,8 -0,1
Total 881,7 -167,1 246,1
The shear forces in direction X, Y and Z:
Fray = Z Fikoil
For mode 1 in direction x:
—439,9
FX,(I) = W = —0,4399kN
) Fx Fy F.
Units (kN) (kN) (kN)
1 -0,4399 7,0063 1,2718
2 0,8817 -0,1671 0,2461
Total 0,99 7,01 1,30

The overturning moment

in each node for each direction is:

Mii) = Fikq) * 2

Mngzx,1) = Fnzy,1) * (height — overturning height)
Mn2x,(1) = 1227,3N * (5m — Om)
MNZ,X,(I) = _6136,4N.m
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The other values are:

Model
Node Mx (1) My (1)
(N.m) (N.m)
N2 -6136,4 513,1
N4 -6136,4 315,1
N5 -7709,0 623,6
N7 -15049,9 747,9
Mode2
Node Mx (2) My (2)
(N.m) (N.m)
N2 2791,4 -1895,4
N4 2791,4 -60,8
N5 -1608,1 -2307,1
N7 -3139,2 -145,2

The sum of the moments for each node gives the overturning moment in base

() M, My
Units (kN) (KN)
1 -35,0317 2,1997
2 0,8355 -4,4085
Total 35,04 4,93

The moments for each separate mode are combined with the SRSS-method.

Calculation of the modal displacement :
Uik () = Gg) * P

For instance for node 2 in direction X and first mode:
{G} = {0,7524} and  {Pnzxn)} = {—0,001267}
So:
Unzx,(1) = (0,7524 * —0,001267) * 1000 = —0,95mm

Other values are:

Model
Node Ux Uy Uz
(mm) (mm) (mm)
N2 -0,95 11,40 0,03
N4 -0,59 11,40 -0,03
N5 -0,95 11,77 9,70
N7 -0,58 11,77 0,00
Mode2
Node Ux Uy Uz
(mm) (mm) (mm)
N2 2,60 -3,82 0,00
N4 0,08 -3,82 0,00
N5 2,59 1,81 1,38
N7 0,08 1,81 0,00
Total
Node Ux Uy Uz
(mm) (mm) (mm)
N2 2,76 12,03 0,03
N4 0,59 12,03 0,03
N5 2,76 11,90 9,80
N7 0,59 11,90 0,00
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Calculation of the modal acceleration :

. — 2
Uix,g) = 03 * Gg) * b

For instance for node 2 in direction X and first mode:

Model
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 -158,6 1897,2 53
N4 -97,4 1897,2 -4,5
N5 -158,4 1957,8 1645,2
N7 -97,3 1957,7 0,1
Mode2
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 586,0 -863,0 -0,4
N4 18,8 -863,0 1,0
N5 585,9 408,4 312,1
N7 18,9 408,4 0,0
Total
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 607,1 2084,3 53
N4 99,2 2084,3 4,6
N5 606,9 2000,0 1644,1
N7 99,1 1999,9 0,1

Next, the displacements are inputted on the structure by means of a load case:
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Direction Reference

INPUT TABLE
4 Name

1 TRS1 X
2 TRS2 X
3 TRS3 X
4 TRS4 X
5 TRSS Y
6 TRS6 X
i TRS7 Y
8 TRS8 XY
9 TRS9 r4
10 TRS10 X
11  TRsll X
12 TRS12 X
13  TRS13 X
14 TRS14 Y
15  TRS15 Y
16 TRS16 X
17 | TRS17 Y
18 TRS18 Z

/| Relative
V| Relative
| Relative
V| Relative
Vv Relative
V| Relative
V| Relative
V| Relative
| Relative
V| Relative
| Relative
| Relative
V| Relative
v | Relative
Vv Relative
V| Relative
/| Relative

V| Relative

!,!"'3' Loads A m

Value ... Suppo...

2.60 Sn2
2.60 Sn5
0.08 Sn4
0.08 Sn7
-3.82 Sn2
-3.82 Sn4
181 Sn5
181 Sn7
138 Sn5
-0.95 Sn2
-0.95 Sn5
-0.59 Sn4
-0.59 Sn7
11.40 Sn2
11.40 Sn4
1.77 SnS
1177 Sn7
9.70 Sn5

liNg 1) = —0,95 * 166,4 = —158,6mm/s”

Type here

Load case
LC4
LC4
LC4
LC4
LC4
LC4
LC4
LC4
LC4
Lc3
Lc3
Lc3
LC3
LC3
Lc3
LC3
L3
LC3
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For these load cases the following internal forces are computed:

Name dx Case N Vy Vz My M, M:
[m] [kN] [kN] [kN] [kNm] [kNm] [kNm]
Bl 0.000 |LC3 4.38| -1.35| 036 0.01 -0.49 3.44
Bl S5.000 |LC3 4.38 -1.35 0.36 0.01 1.29 -3.30
B2 0.000 |LC3 -3.73| -1.35| -0.04 0.01 0.12 3.44
B2 S5.000 |LC3 -3.73 -1.35 -0.04 0.01 -0.06 -3.30
B3 0.000 |LC3 0.62| -432| -0.78 0.28 6.54 | 18.85
B3 5.000 |LC3 0.62 -4.32 -0.78 0.28 2.65 -2.73
B4 0.000 |LC3 0.00 0.35 0.08 -4.43 -1.48 -0.40
B4 3.000 |LC3 0.00| 035| 0.08 -4.43 -1.24 0.63
BS 0.000 |LC3 0.00| -0.12| -1.19 1.48 2.69 0.35
BS 6.000 |LC3 0.00 -0.12 -1.19 148 -4.43 -0.40
BS 0.000 |LC3 0.00| -0.12| 0.54 1.49 -1.46 033
B6 6.000 |LC3 0.00 -0.12 0.54 145 1.78 -0.36
B7 3.000 |LC3 0.00| 0.23| -3.19 -1.40 -4.80 0.24
B7 0.000 |LC3 0.00 0.23 -3.19 -1.40 4.78 -0.35
Name dx Case N Vy Vz My M, M
[m] [kN] [kN] [kN] [kNm] [kNm] [kNm]
B1 0.000 |LC4 -0.27 0.46 0.36 -0.15 -0.88 -1.17
Bl 5.000 |LC4 -0.27 0.46 0.36 -0.15 0.94 1.15
B2 0.000 |LC4 0.59 0.45 0.01 -0.16 -0.03 -1.17
B2 5.000 |LC4 0.59 0.46| 0.01 -0.16 0.04 1.15
B3 0.000 |LC4 -0.08| -0.77 0.49 -2.26 -1.52 3.07
B3 5.000 |LC4 -0.08 -0.77 0.43 -2.26 0.94 -0.76
B4 0.000 |LC4 0.00| -0.55| -0.08 -0.91 -0.25 -0.12
B4 3.000 |LC4 0.00 -0.55 -0.08 -0.91 -0.50 -1.78
BS 0.000 |LC4 0.00| -0.05| -0.33 0.25 1.04 0.20
BS 6.000 |LC4 0.00 -0.05 -0.33 0.25 -0.91 -0.12
BS 0.000 |LC4 0.00| -0.13| 0.01 0.26 -0.06 031
B6 6.000 |LC4 0.00 -0.13 0.01 0.26 -0.03 -0.48
B7 0.000 |LC4 0.00 0.06 0.60 -0.10 -0.90 -0.05
B7 3.000 |LC4 0.00| 0.06| 0.60 -0.10 0.89 0.14

According to the SRSS-method the following formula is used:

N
2
Z R
=1

Riot =

Take for instance the normal force in member B1:
Niot = +/(4,38kN)2 + (—0,27kN)? = 4,39kN

Nom dx Cas N V, V. M. M, M.
[m] [k] [kH] [kN] [lktim] [kfm] [klim]
Bl 0.000 [z | 439 1.43] 051 0.15 1.00] 3.63

Bl 1.818 LG2 439| 143 0.51 0.15 0.27 1.04

B1 5,000 LC2 439]| 143| 0.51 0.15 1.59 3.50

B1 2.500+ |[LC2 439 143] 0.51 0.15 0.40 0.07

B2 0.o00  JLC2 3.78| 1.43| 0.04 0.16 0.13 3.63

B2 3.182 Lc2 378| 1.43| 0.04 0.16 0.01 0.90

B2 2,500+ [LC2 3.78] 143| 0.04 0.16 0.03 0.07

B3 0.000 LC2 0.63| 438 0.91 2.27 6.65| 19.08

B3 5.000 LC2 0.63| 438]| 0.91 2.27 2.83 2.82

B3 4.545 Lc2 0.63| 438| 0.91 2.27 3.09 0.86

B4 3.000 LC2 1.44| 0.65]| 0.12 4.53 1.32 1.88

B4 0.000 LC2 144| 0.65] 0.12 4.53 1.50 0.42

B85 2.308 LC2 0.24 | 0.14 1:23 1.50 0.29 0.10

B 3.000-  [LC3 D.24 0.14] 1.23 1.50 0.87 0.05

BS 6.000 LC2 0.24| 0.14| 1.23 1.50 4.53 0.42

B6 2769  [LC2 027 0.18] 0.54 1.51 0.06 0.06

BG 6.000 LC2 0.27| 0.18| 0.54 1.51 1.77 0.60

87 1.500-  |LC2 0.04 024] 3.25 1.40 0.01 0.05

87 3.000 Lc2 0.04| 0.24| 3.25 1.40 4.88 0.38

These values correspond with the internal forces for the seismic load case in the project.
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The same can be done for the reactions:

Name Case Rx Ry Rz My My M:
[kN] [kN] [kN] [kNm] [kNm] [kNm]
Sni/N1 |LC3 -0.36 | -1.35| -4.38 3.44 -0.43 0.01

Sn6/N6  [LC3 0.78]| -432| -0.62 18.85 6.54 0.28

Sn3/N3 _|LC3 004]| -135| 3.73 3.4 0.12 0.01

cl cl cl « <« «

Sni/N1_|LC4 -036| 046| 027 -1.17 -0.88 -0.15

Sné/N6  [LC4 0495| -0.77] 0.08 3.07 -1.52 -2.26

Sn3/N3 _ |LC4 -0.01 046 | -0.59 -1.17 -0.03 -0.16

Calculation of the reaction for N1:
Ry = /(—0,36kN)2 + (—0,36kN)2 = 0,51kN

Nom Cas Rs Rz M My

“] Hl
[kl [kN] [kN] [kNm] [kim] [lkiim]
Sn1l/N1 [LCZ 051 1.43| 4.39 3.63 1.00 0.15

Sn2/N6 [LC2 091 438| 0.63| 15.08 6.65 2.27

Sn3/N3_|LC2 0.04]| 1.43| 3.78 3.63 0.13 0.16

After verifying the results for the seismic load case, we can conclude that these values of the manual

calculation correspond to the calculated values by SCIA Engineer.
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9.2 Spectral analysis example with « residual mode »

Example D-2.esa : spectral analysis with residual mode

If there is too less mass taken into account with the standard method, more mass will be added to satisfy the
prescriptions of the EC.

The aim of this method is to evaluate the missing mass as an extra mode which is computed as an equivalent
static load case. The static load case represents the weight of the missing mass under the cut-off acceleration.
Afterwards it's summed depending the selected rule SRSS, CQC, MAX.

This missing mass is taken in the seismic analysis as an extra mode which represents the weight of the missing
mass. The modal result of this mode is computed by a static equivalent load case.

The effective masses are calculated for each separate node. In the other method, the effective mass was
determined for each direction in each mode. Now, this parameter will be calculated for each different node in
direction X,Y and Z for each mode. Later, this missing mass will be taken into account by means of an extra
load case.

Effective mass in node:
My * @1, * Meftk )
1000 * vy

Mefex )i =

Calculation of the effective mass in direction X for mode 1 and N2:
646,875kg * (—12,67) * 12,346 _

MeftNzx, (1) = 10000 = (—3,514) =%

Effective mass in nodes (k direction, j mode):

Mode 1
Node Mx My Mz
(kg) (kg) (kg)
N2 2,9 548,5 0,3
N4 1,8 548,5 -0,2
N5 3,5 689,1 103,1
N7 4,2 1345,3 0
Total 12,346 3131,374 103,182
Mode 2
Node Mx My Mz
(kg) (kg) (kg)
N2 174,0 48,6 0
N4 5,6 48,6 0,1
N5 211,7 -28,0 31,5
N7 13,3 -54,6 0
Total 404,60 14,53 31,52
Mode 1 & 2
Node Mx My Mz
(kg) (kg) (kg)
N2 176,8 597,1 0,2
N4 7,4 597,1 -0,2
N5 215,2 661,1 134,6
N7 17,5 1290,7 0
Total 416,9494 3145,9065 134,6994
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The missing mass

is the difference between the total mass for each node minus the effective mass:

Mmissing,NZX = 646,9 — 176,8 = 470kg

Node Mx My Mz
(kg) (kg) (kg)
N2 470,0 49,8 646,6
N4 639,5 49,8 647,0
N5 572,3 126,4 652,9
N7 1520,0 246,8 1537,5

Out of these missing masses, load cases are generated. This by the formula:
Load case;x = Mpjssing,ik * Sk cutofr

Node Fx Fy Fz
(kN) (kN) (kN)
N2 0,940 0,100 1,293
N4 1,279 0,100 1,294
N5 1,145 0,253 1,306
N7 3,040 0,494 3,075
Total 6,4036 0,9457 6,9681

Note: The cut-off acceleration is the acceleration of the cut-off frequency, this the last calculated frequency.

Calculation of the mode coefficient :

SakG) * Yk

Gy =
: W)
1
G (—3,514kgi)
Gy 1) = 166,4/52 = —0,042m.kg'/?
() Gx Gy G: G
UnitS (m*kgll2) (m*kgll2) (m*kgll2) (m*kgll2)
1 -0,042 0,673 0,122 0,752
2 0,178 -0,034 0,050 0,194

Calculation of the lateral forces :

_ .. _ 2
Fikd = Mikg) * Uik = Mikg * GG * Pikg) * 06

1
646,9kg * 0,75m. kg2 * (—12,67mm) * 166/s>

1,%,(1) = 10000 = _102,6N
Mode 1
Node F x(1) F y(1) F (1)
(N) (N) (N)
N2 -102,6 1227,3 3,4
N4 -63,0 1227,3 -2,9
N5 -124,7 1541,8 1271,1
N7 -149,6 3010,0 0,2
Total -439,9 7006,3 1271,8
Mode 2
Node F x(2) F y(2) F 2(2)
(N) (N) (N)
N2 379,1 -558,3 -0,3
N4 12,2 -558,3 0,6
N5 461,4 321,6 245,8
N7 29,0 627,8 -0,1
Total 881,7 -167,1 246,1
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Calculation of the shear force in base :

Frgy = Z Fik gl
i

0 F_x Fy F

units (kN) (kN) (kN)
1 -0,4399 7,0063 1,2718
2 0,8817 -0,1671 0,2461
R 6,4036 0,9457 6,9681

Total 6,5 7.1 7.1

The overturning moment

in each node is calculated as follows:
Miig) = Fikg * 2

The height zi is equal to the height of the concerning node minus the overturning height. In this case, the
overturning height is equal to zero.

Mode 1
Node M_x(1) M_y(1)
(N.m) (N.m)
N2 -6136,4 513,1
N4 -6136,4 315,1
N5 -7709,0 623,6
N7 -15049,9 747,9
Mode 2
Node M_x(2) M_y(2)
(N.m) (N.m)
N2 2791,4 -1895,4
N4 2791,4 -60,8
N5 -1608,1 -2307,1
N7 -3139,2 -145,2

In this case, an extra overturning moment is calculated for the residual load case:
Mnzy 1) = 0,94kN * (5m — 0m) = —4,7kN.m

Mode R
Node M_x(R) M_y(R)
(KN.m) (KN.m)
N2 0 -4,7
N4 0 -6,4
N5 0 -5,7
N7 0 -15,2

The letter R stands for the residual mode.

For each mode the sum of the overturning moments
the SRSS method:

1) M_x M_y
units (kN) (kN)

1 -35,0317 2,1997

2 0,8355 -4,4085

R 0,0000 -32,0180
Total 35,0 32,4
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Calculation of the modal displacement :

Uik gy = Gy * Pig)

Mode 1
Node Ux Uy Uz
(mm) (mm) (mm)
N2 -0,95 11,40 0,03
N4 -0,59 11,40 -0,03
N5 -0,95 11,77 9,70
N7 -0,58 11,77 0,00
Mode 2
Node Ux Uy Uz
(mm) (mm) (mm)
N2 2,60 -3,82 0,00
N4 0,08 -3,82 0,00
N5 2,59 1,81 1,38
N7 0,08 1,81 0,00

To calculate the deformations for mode R, the load cases - generated out of the missing masses - are inputted

as real load cases on the nodes of the structure. This gives the following table:

2. Deformation of nodes

Linear calculation, Extreme : Node
Selection : All
Load cases : LC3
Node Case Ux Uy Uz

[mm] [mm] mm]
N1 LC3 0 0 0
N2 LC3 4,14 4,91 0,03
N3 LC3 0 0 0
N4 LC3 1,46 4,91 0
N5 LC3 4,14 8,25 6,74
N6 LC3 0 0 0
N7 LC3 1,45 8,25 0

The deformations for each mode (namely mode 1, mode 2 and mode R) are combined with the SRSS-formula:

Total
Node Ux Uy Uz
(mm) (mm) (mm)
N2 4,98 12,99 0,04
N4 1,58 12,99 0,03
N5 4,98 14,48 11,89
N7 1,57 14,48 0,00
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The same for the modal acceleration :

.. _ 2
li ) = @G * Gg) * bk

Mode 1
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 -158,6 1897,2 53
N4 -97.4 1897,2 -4,5
N5 -158,4 1957,8 1614,2
N7 -97,3 1957,7 0,1
Mode 2
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 586,0 -863,0 -0,4
N4 18,8 -863,0 1,0
N5 585,9 408,4 312,1
N7 18,9 408,4 0,0

For the mode R, the constant value of 2000mm/s2? is used:

Mode R
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 2000,0 2000,0 2000,0
N4 2000,0 2000,0 2000,0
N5 2000,0 2000,0 2000,0
N7 2000,0 2000,0 2000,0
This gives through the SRSS-method:
Total
Node ax ay az
(mm/s?) (mm/s?) (mm/s?)
N2 2090,1 2888,7 2000,0
N4 2002,5 2888,7 2000,0
N5 2090,1 2828,4 2589,0
N7 2002,5 2828,3 2000,0

In the same way as for the ‘missing mass method’ the calculated deformations are put on the structure as real

load cases. This gives the following internal forces :

Mode 1:

Selection : All
Load cases : LC3

Linear calculation, Extreme : Member, System : Principal

Member [Case dx N Vy Vz Mx My Mz
[m]  |[kN] [kN] [kN] [KNm] [kNm] [KNm]
Bl LC3 0 4,38 -1,35 0,36 0,01 -0,49 3,44
B1 LC3 5 4,38 -1,35 0,36 0,01 1,29 -3,3
B2 LC3 0 -3,73 -1,35 -0,04 0,01 0,12 3,44
B2 LC3 5 -3,73 -1,35 -0,04 0,01 -0,06 -3,3
B3 LC3 0 0,62 -4,32 -0,78 0,28 6,54 18,85
B3 LC3 5 0,62 -4,32 -0,78 0,28 2,65 -2,73
B4 LC3 0 0 0,35 0,08 -4,43 -1,48 -0,4
B4 LC3 3 0 0,35 0,08 -4,43 -1,24 0,63
B5 LC3 0 0 -0,12 -1,19 1,48 2,69 0,35
B5 LC3 6 0 -0,12 -1,19 1,48 -4,43 -0,4
B6 LC3 0 0 -0,12 0,54 1,49 -1,46 0,33
B6 LC3 6 0 -0,12 0,54 1,49 1,78 -0,36
B7 LC3 0 0 0,23 -3,19 -1,4 4,78 -0,35
B7 LC3 3 0 0,23 -3,19 -1,4 -4,8 0,34

128

MJA — 2024/02/29




Mode 2:

Linear calculation, Extreme : Member, System : Principal

Selection : All
Load cases : LC4
Member Case dx N Vy Vz Mx My Mz
[m] [kN] [kN] [kN] [KNm] [KNm] [KNm]
Bl LC4 0 -0,27 0,46 0,36 -0,15 -0,88 -1,17
Bl LC4 5 -0,27 0,46 0,36 -0,15 0,94 1,15
B2 LC4 0 0,59 0,46 0,01 -0,16 -0,03 -1,17
B2 LC4 5 0,59 0,46 0,01 -0,16 0,04 1,15
B3 LC4 0 -0,08 -0,77 0,49 -2,26 -1,52 3,07
B3 LC4 5 -0,08 -0,77 0,49 -2,26 0,94 -0,76
B4 LC4 0 0 -0,55 -0,08 -0,91 -0,25 -0,12
B4 LC4 3 0 -0,55 -0,08 -0,91 -0,5 -1,78
B5 LC4 0 0 -0,05 -0,33 0,25 1,04 0,2
B5 LC4 6 0 -0,05 -0,33 0,25 -0,91 -0,12
B6 LC4 0 0 -0,13 0,01 0,26 -0,06 0,31
B6 LC4 6 0 -0,13 0,01 0,26 -0,03 -0,48
B7 LC4 0 0 0,06 0,6 -0,1 -0,9 -0,05
B7 LC4 3 0 0,06 0,6 -0,1 0,89 0,14
Mode R:
Linear calculation, Extreme : No, System : Principal
Selection : All
Load cases : LC3
Member Case dx N Vy Vz Mx My Mz
[m] [kN] [kN] [kN] [KNm] [KNm] [KNm]
Bl LC3 0 4,232 -0,575 0,824 -0,134 -1,804 1,47
Bl LC3 5 4,232 -0,575 0,824 -0,134 2,314 -1,402
B2 LC3 0 -0,061 -0,574 0,244 -0,144 -0,559 1,47
B2 LC3 5 -0,061 -0,574 0,244 -0,144 0,661 -1,401
B3 LC3 0 2,798 -3,078 5,79 -2,301 -22,431 13,299
B3 LC3 5 2,798 -3,078 5,79 -2,301 6,521 -2,093
B4 LC3 0 -1,406 -1,192 0,005 -4,714 -1,048 0,818
B4 LC3 3 -1,406 -1,192 0,005 -4,714 -1,033 -2,759
B5 LC3 0 0,159 0,242 -1,301 1,048 3,092 -0,632
B5 LC3 6 0,159 0,242 -1,301 1,048 -4,714 0,818
B6 LC3 0 -1,527 0,164 -0,282 1,061 -0,117 -0,525
B6 LC3 6 -1,527 0,164 -0,282 1,061 -1,807 0,457
B7 LC3 0 0,039 -0,478 -1,637 -0,778 2,45 0,766
B7 LC3 3 0,039 -0,478 -1,637 -0,778 -2,461 -0,669
Combination via SRSS method gives:
Member [Case dx N Vy Vz Mx Mz
[m]  |[kN] [kN] [kN] [KNm] [KNm] [KNm]
B1 LC2 0,00 6,10 1,54 0,97 0,20 2,07 3,92
B1 LC2 5,00 6,10 1,54 0,97 0,20 2,81 3,77
B2 LC2 0,00 3,78 1,54 0,25 0,22 0,57 3,92
B2 LC2 5,00 3,78 1,54 0,25 0,22 0,66 3,77
B3 LC2 0,00 2,87 5,36 5,86 3,24 23,41 23,27
B3 LC2 5,00 2,87 5,36 5,86 3,24 7,10 3,52
B4 LC2 0,00 1,41 1,36 0,11 6,53 1,83 0,92
B4 LC2 3,00 1,41 1,36 0,11 6,53 1,69 3,34
B5 LC2 0,00 0,16 0,27 1,79 1,83 4,23 0,75
B5 LC2 6,00 0,16 0,27 1,79 1,83 6,53 0,92
B6 LC2 0,00 1,53 0,24 0,61 1,85 1,47 0,69
B6 LC2 6,00 1,53 0,24 0,61 1,85 2,54 0,75
B7 LC2 0,00 0,04 0,53 3,64 1,60 5,45 0,84
B7 LC2 3,00 0,04 0,53 3,64 1,60 5,47 0,76
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The reactions are:

Mode 1
Linear calculation, Extreme : Node
Selection : All
Load cases : LC3
Support Case Rx Ry Rz Mx My Mz
[kN] [kN] [kN] [kKNm] [kNm] [KNm]
Sn1/N1 LC3 -0,36 | -1,35 -4,38 3,44 -0,49 0,01
Sn2/N6 LC3 0,78 -4,32 -0,62 18,85 6,54 0,28
Sn3/N3 LC3 0,04 -1,35 3,73 3,44 0,12 0,01
Mode 2:
Linear calculation, Extreme : Node
Selection : All
Load cases : LC4
Support Case Rx Ry Rz Mx My Mz
[KN] [KN] [KN] [KNm] [kNm] [KNm]
Sn1/N1 LC4 -0,36 0,46 0,27 -1,17 -0,88 -0,15
Sn2/N6 LC4 -0,49| -0,77 0,08 3,07 -1,52 -2,26
Sn3/N3 LC4 -0,01 0,46 -0,59 -1,17 -0,03 -0,16
Mode R:
Linear calculation, Extreme : Node
Selection : All
Load cases : LC3
Support Case Rx Ry Rz MXx My Mz
[KN] [KN] [KN] [KNm] [kNm] [KNm]
Sn1/N1 LC3 -0,82| -0,575 -4,232 1,47 -1,804 -0,134
Sn2/N6 LC3 -5,79| -3,078 -2,798 13,299 -22,431 -2,301
Sn3/N3 LC3 -0,24 | -0,574 0,061 1,47 -0,559 -0,144
SRSS:
Support [ase Rx Ry Rz Mx My Mz
[KN] [TkN] [kN] [KNm] [KNm] [KNm]
Sn1/N1 LC2 0,97 1,54 6,10 3,92 2,07 0,20
Sn2/N6 LC2 5,86 5,36 2,87 23,27 23,41 3,24
Sn3/N3 LC2 0,25 1,54 3,78 3,92 0,57 0,22
Notes:

In case of CQC, we don’'t assume any correlation with the other modes (i.e. absolute value is added)
The cut-off frequency is the frequency of the latest modes in the analysis. It is the responsibility of the user to

select the correct number of modes. This can be done in the Solver Setup.
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Chapter 10: FORCED VIBRATION - HARMONIC LOAD

In this chapter, the forced vibration calculation is examined. More specifically, the structure will now be loaded
with an external harmonic load, which will cause the structure to vibrate.

A forced vibration calculation can be required to check the response of a building near a railroad or major
traffic lane, to check vibrations due to machinery, to verify structural integrity of a floor loaded by an aerobics
class,...

As in the previous chapter, first the theory will be discussed. The theory will then be illustrated by examples,
which will again be verified by manual calculations.

10.1. Theory

To understand what is going on during the dynamic analysis of a complex structure with frames or finite
elements, the forced vibration of a SDOF (Single Degree Of Freedom) system is regarded in detail. A complete
overview can be found in reference [1].

Consider the following system:

F(t)

|
| e

A body of mass m can move in one direction. A spring of constant stiffness k, which is fixed at one end, is
attached at the other end to the body. The mass is also subjected to damping with a damping capacity c. An
external time dependant force F(t) is applied to the mass.

The equation of motion can be written as:
m.y(t) + c.y(t) + k. y(t) = F(t)

(3.1)
When the acting force on this system is a harmonic load, equation (3.1) can be rewritten as follows:
m.y(t) + c.y(t) + k. y(t) = F.sin(v.t)
3.2
With:
F: amplitude of the harmonic load
v: circular frequency of the harmonic load
A solution to this equation is the following:
(© = et [A. cos(wpt) + B. sin(wpt)] + Ys. -t~ 9
y =€ . .COS(W . SIn(w .
P P S JA =122 + (2r0)2
(3.3)
Where:
Ys: the static deflection
F
Ys =1
(3.4)
&: the damping ratio
C
&= 2.m.w
(3.5)
wp: the damped circular frequency
Wp = w.4/1—&
(3.6)
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tan(0):
tan(6) = 2.&8.r
an = 1 12
(3.7
r: the frequency ratio
r=—
w
(3.8)

The angle 0 signifies that the displacement vector lags the force vector, that is, the motion occurs after the
application of the force. A and B are constants which are determined from the initial displacement and velocity.
The first term of equation (3.3) is called the Transient motion. The second term is called the Steady-state
motion. Both terms are illustrated on the following figure:

Combined motion

Sieady-stala
maotion

o .. A

=1

Transient

mation QU_.

The amplitude of the transient response decreases exponentially (e_z‘”t). Therefore, in most practical
applications, this term is neglected and the total response y(t) can be considered as equal to the steady-state
response (after a few periods of the applied load).

Equation (3.3) can then be written in a more convenient form:

Y 1
Ys  J(1-r2)? + (2r5)2

(3.9)

(Y/Ys) is known as the Dynamic Magnification factor , because Ysis the static deflection of the system under
a steady force F and Y is the dynamic amplitude.

The importance of mechanical vibration arises mainly from the large values of (Y/Ys) experienced in practice
when the frequency ratio r has a value near unity: this means that a small harmonic force can produce a large
amplitude of vibration. This phenomenon is known as resonance. In this case, the dynamic amplitude does
not reach an infinite value but a limiting value:
Ys /
2§
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10.2. Harmonic load in SCIA Engineer

In SCIA Engineer, a Harmonic Load can be inputted after creating a Combination of Mass Groups. This implies
that the steps used to perform a Free Vibration calculation still apply here and are expanded by the properties
of the Harmonic Load.

Conform the theory, a Harmonic Load is defined by a forcing frequency and an amplitude. To specify the
damping ratio of the structure, the logarithmic decrement can be inputted. [1]

The logarithmic decrement A is the natural logarithm of the ratio of any two successive amplitudes in the same
direction. This is illustrated on the following figure:

A=
= ]n—
X11
(3.10)
X X,
\‘-“\-. I' X Circular frequency /(1 —leu "W,
~d
I\
._--L"r'-_-_ t
V%
P
Y | 1 Exponential decay Xe f«’
/
The logarithmic decrement A is related to the damping ratio ¢ by the following formula:
2mé
= 7= =
(3.11)

The damping ratio and the logarithmic decrement are looked upon in more detail in chapter « Damping ».

Harmonic Loads in SCIA Engineer are always defined as nodal forces i.e. a nodal load or a nodal moment.
More than one node of the structure can be loaded in a load case, but the frequency of all solicitations is equal
to the forcing frequency specified for that load case.

As specified in the theory, the static results are multiplied by the dynamic magnification factor. The dynamic
calculation is thus transformed to an equivalent static calculation. Therefore, a Linear Calculation needs to be
executed. During this calculation, the Free Vibration Calculation will also be performed since this data is
needed for the result of the Harmonic Load.
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The following diagram shows the required steps to perform a Forced Vibration calculation:

Activate the “Dynamics” functionality

A
Create a mass group

/\

Input masses

Generate masses from static load cases

o~ -

Create a mass combination

!

Create a harmonic load case

}

Input harmonic loads

!

Refine the finite element mesh if required

!

Specify the number of eigenmodes to be calculated

!

Perform a linear calculation

This diagram is illustrated in the following examples.
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Example 10-1.esa

In this example, a beam on two clamped supports is modelled. The beam has a cross-section type IPE200, a

length of 6 m and is manufactured in S 235 according to EC-EN. A node has been added to the middle of

the beam, in which a mass of 200 kg will be inputted.

IPE200
P A Py
6000 I,
A A

One static load case is created: the self-weight of the beam. However, in order not to take the self-weight into
account for the dynamic calculation, the volumetric mass of S 235 can be set to 1 kg/m? in the Material Library.
This will render it easier to check the results through a manual calculation.
The mass of 200 kg is vibrating with a frequency of 5 Hz. The damping ratio of the system is taken as 5%.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in

the Project Data .
Step 2: mass group

The second step is to create a Mass Group

B " Mass groups

AAaspik 9> & = A

MG1 Name

Description
Bound to load case
Load case

Keep masses up-to-date with loads

Actions
Create masses from load case

Delete all masses

New Insert Edit

- Y
MG1

Yes
LC1 - Dead load

v

23>

25>

Close

Step 3: masses

After the Mass Group has been created; the mass of 200 kg can be inputted in the middle of the beam.

IR
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Step 4: mass matrix

Next, the Mass Group is put within a Combination of Mass Groups , which can be used for defining the
harmonic load.

8 Combinations of mass groups X
AAreleBEk 9= & A -V
M1 [Name ] em

Description

Contents of combination
MG1 [-] 1.00

New Insert Edit Close

Step 5: harmonic load case

After creating a Combination of Mass Groups, an harmonic load case can be defined through Load cases,
Combinations > Load Cases .

The Action type is defined on Variable , the Load type is Dynamic .

On “Specification” , the type of load case « Earthquake » is defined by default. But in this case, it is an
Harmonic load case.

B’ Load cases X
HLeBEI 0> & - A BRY,
LC1 - Dead load Name Lc2
LC2 - Harmonic |Descripticm | Harmonic
Action type Variable
Load group LG2
Load type Dynamic
Specification Harmonic
Parameters
Logarithmic decrement 0.31455270229
Frequency [Hz] 5.00
Master load case None
Combination of mass groups M1
3D Wind
Actions
Delete all loads 5>
Copy all loads to another loadcase >>>
New Insert Edit Delete Close

The last option, Mass combi , shows which mass combination (mass matrix) will be used for the calculation of
the harmonic load case.

To specify the parameters of the harmonic load case, we need to use the menu « Parameters ».

The damping ratio was given to be 5%. Applying formula (3.11), the logarithmic decrement can be calculated:

2né 2*m*0,05
= = = 0,31455270229
V1-¢ 1-(0,05)7
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Step 6: introduction of a point load

The parameters of the load case have been defined, what is left is inputting the amplitude of the load. The

mass was 200 kg.
This corresponds to a load of 1,962 kN using 9,81 m/s2 for the acceleration of gravity.
This load can be inputted through the input panel « Point load on node  »:

1. B

—

Note:

As specified in the theory, more than one harmonic load can be inputted in the same harmonic load case
however the harmonic parameters like damping and forcing frequency are defined on the level of the load
case. This implies that, for example, when several harmonic loads are vibrating with different frequencies,
different load cases have to be created.

Step 7: mesh setup

To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined.
This can be done through the main menu Tools / Calculation & Mesh / Mesh settings.

%" Mesh setup X
Name MeshSetup1

[y ————— )
Average size of 1D mesh element on curved 1D members [m] 1.000
Average size of 2D mesh element [m] 1.000
Connect members/nodes 4

Setup for connection of structural entities
Advanced mesh settings

ol o, =

-

The Average number of tiles of 1D element is set to 10.
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Step 8: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this
example, only one eigenmode is required so in Calculation & Mesh / Solver Settings the number of
frequencies is set to 1.

To compare the results with a manual calculation, the shear force deformation is neglected.

8" Solver setup X
Name SolverSetup1
“ Advanced solver settings
4 General
e e stomion i e 3 B )
Type of solver Direct -
Number of sections on average member 10
Warning when maximal translation is greater than [mm] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
Coefficient for reinforcement 1
Nonlinearity

Initial stress
“ Dynamics

Type of eigen value solver Lanczos

(Number of eigenmodes 1 ]
Use IRS (Improved Reduced System) method

Method for time history analysis direct time integration -
Mass components in analysis

Stability

Soil

B & & Cancel

Step 9: modal analysis

All steps have been executed so the Linear calculation and modal analysis can be started through
Calculation, mesh > Calculation

Note: For the moment, this analysis can be launched only on the 32-bit version of SCIA Engineer and in the
“v16 and older” post-processing environment.

FE analysis *

I Single analysis  Batch analysis !

Linear calculation
Maontinear caleulation
Modal analysis
Stahbility
Caoncrete - Code Dependent Deflections {CDD)
Construction stage analysis
Engineering report regeneration

|:| Save project after analysis

Solver setup | Mesh setup

oK | Cancel
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This gives the following results:

Eigen frequencies

N f ®
[1/s]

Mass combination

[Hz]

mz

[1/s2]

: CM1

T
[s]

1

[21.43 [134.66 [18132.59 | 0.05

The deformation for the harmonic load shows the following:

-0.6

Deformed structure

Linear calculation, Extreme : Global, System : LCS
Selection : All
Load cases : LC2

Case Member dx Ux/ux Uz/uz Fiy/fiy Resultant
[m] [mm] [mm] [mrad] [mm]
LE2 B1 0.000 0.0 0.0 0.0 ¥
LC2 B1 3.000 0.0 -0.6 0.0 0.6
Lc2 B1 4.500 0.0 -0.3 -0.3 0.3
[c2 Bi 1.500 0.0 -0.3 0.3 0.3

It is however very important to keep in mind that this is a vibration: half a period later the deformation is to

the upper side of the beam instead of the lower side.
The moment diagram for the harmonic load would give the next diagram:

-1.56

Internal forces on member

Linear calculation, Extreme : Global, System : LCS
Selection : All
Load cases : LC2

Member css dx Case N \'/4 My
[m] [kN] [kN] [kNm]
B1 CS2 - IPE200 0.000 [LC2 0.00 1.04 -1.56
B1 CS2 - IPE200 5.400 | LC2 0.00| -1.04 -0.93
Bi CS2 - IPE200 3.000 |LC2 0.00 1.04 1.56

This diagram is completely analogous to the moment diagram which one finds for a simple point load.

However, when performing dynamic calculations, one must always take into account both directions of the

loading since the load vibrates in both directions
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In SCIA Engineer, this double sided deformation can easily be checked by creating combinations of type
code or envelope . In these combinations, the dynamic load cases will be accounted for with both a positive
and a negative combination coefficient and thus both sides of the vibration amplitude are taken into account.

In this example, a combination of type Envelope - ultimate

case.

& " Combinations

A eBEKk 2= 8

Cco1

New Insert Edit

Delete

Input combinations

Name

is created which contains only the harmonic load
X

co1

IDescription

Type
Contents of combination
LC1 - Dead load [-]
LC2 - Harmonic [-]

Actions

Explode to linear

Envelope - ultimate

1.00
1.00

Close

The moment diagram for this

W

combination shows the following:

1.56

N

The vibration effect is correctly taken into account: both sides of the vibration are visible. This is also shown in
the Combination Key of the Document ; which shows the two generated Linear combinations from the

Envelope combination (Local Extremes):

%" Combinations

AP sBEK 2> 8
Cco1

coin

Cco1/2

Co1/3

New Insert Edit Delete

%" Combinations

Az e 0 o|&
cot

co

co1/2

o173

New Insert Edit Delete

X
Input combinations

[Name co12
Description
Type Linear - ultimate
Amplified Sway Moment method no

Contents of combination

LC1 - Dead load [-] 1.00

LC2 - Harmonic [-] 1.00

Close
X
Input combinations

[Name co1/3
Description
Type Linear - ultimate
Amplified Sway Moment method no

Contents of combination

LC1 - Dead load [-] 1.00

LC2 - Harmonic [-] -1.00

Close
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Manual calculation

In order to check the results of SCIA Engineer, a manual calculation is performed.
First, the calculated eigen frequency is checked using formula (2.3).
Using default engineering tables [11], the maximum static deformation of a beam with length L, clamped at
both sides and loaded with a load F in the middle is given as:
5 FL3
max 129Kl
(3.12)
Where:
F=1,962 kN =1962 N
L =6 m=6000 mm
E = 210000 N/mm?2
| = 19430000 mm#*

So:

(1962N) = (6000mm)3
= = 0,54095mm
129 % 210000 N/ 2 * 19430000mm*
mm

Smax

The k rigidity of this system can then be calculated:

ket o 192N o603 N/ m = 3626933,33 N/,
" 8max  0,54095mm ' mm = ' m

Applying formula (2.3):

= 134,6712d/,

|k [3626933,33N/p,
®= m” 200kg
So:

w
f=—=21,43Hz
2T

This result corresponds exactly to the result calculated by SCIA Engineer.

Now the eigen frequency is known, the results of the harmonic load can be verified.
The harmonic load had a forcing frequency of 5 Hz, which corresponds to a circular frequency of 31,416 rad/s .

Applying formula (3.8) the frequency ratio can be calculated:

v 31416Tad/
= —=— % =0,233289
W 134,67Tad/

The frequency ratio can then be used in formula (3.9) to calculate the Dynamic Magnification Factor:
1

1
2o = =1,0572
Ys  J(A-r)2+@2rd)? /(1 -0,233289%)2 + (2 * 0,233289 * 0,05)2

This implies that the static results need to be multiplied by 1,0572 to obtain the dynamic results.
The static deformation was calculated as 8,,,, = 0,54095 mm.

The dynamic deformation is equal to 1,0572 * 0,54095mm = 0,5719 mm.
This result corresponds exactly to the result calculated by SCIA Engineer.

In the same way the moment in the middle of the beam can be calculated.
Using default engineering tables [11], the maximum static moment in the middle of a beam with length L,
clamped at both sides and loaded with a load F in the middle is given as:

FL  1,962kN * 6m
M = s~ @8 1,4715kNm

The dynamic moment is equal to 1,0572 * 1,4715kNm = 1,556kNm

This result corresponds exactly to the result calculated by SCIA Engineer.
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10.3. Resonance

As specified in the theory, resonance occurs when the frequency ratio r has a value near unity. In this case,
large values for the Dynamic Amplification factor are obtained.

To illustrate this, the calculation of the Dynamic Amplification Factor is repeated for different frequency ratios
and different damping percentages. The results are given in the following table:

Frequency Forcing Meg. factor | Mag. factor | Mag. Bdor Mag. fador Mag. fackr Mag. facior
Ratfic | Freguence [Hz] | Darnping 53] Damping 23] Damping 10%] Damping 1526] Damping 26% | Damping 50%
0.0 0,00 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
02 429 1.0414 1.0411 10408 1.0388 10381 10188
0.4 EaT 1,1881 1,1870 1,1851 1,1785 1,1581 10748
0.8 1288 1,5557 1,5452 1.5357 1.5041 14148 1,1399
08 17,15 27118 28172 25384 23113 18582 1,1399
1.0 21,43 10,0000 8,2500 5,0000 33333 20000 1,0000
1.2 2572 21828 20830 19952 1, 7520 1,2440 oye2d
1.4 30,01 1,0208 1.0144 1,0000 10,9543 LE:- S5 058
1.6 429 08377 0,6328 0,89280 08137 05704 04475
18 38,58 10,4450 0,4428 10,4408 00,4340 04142 10,3420
20 42 87 0,3328 0,315 10,3304 0,3289 03182 02774
22 47,15 10,2500 0,2593 02587 10,2587 02503 02280
24 51,44 10,2098 0,205 10,2090 02077 02037 0,187
26 55,73 01734 01732 01729 10,1720 00,1984 0,1582
28 80,01 0,1481 0,1458 0, 1457 0,1451 0,1432 0,1353
3.0 84,30 0,1248 10,1248 10,1248 10,1242 01229 0,1170
32 88,58 0,1082 0,1081 10,1080 0,1078 0,1088 01023
34 T2E7 0,05948 10,0538 10,0945 10,0943 00935 10,0901
3.5 7718 00,0838 0,0835 00,0835 10,0833 00eI7 0.0801
38 81,45 0,074 0,0743 00743 10,0741 0073F 00716
4.0 85,73 0,0868 0,05588 00,0855 0,0885 00881 00844
42 90,02 10,0801 10,0800 10,0800 0,0599 00598 00583
4.4 . 00,0545 0,0544 10,0544 0.0543 0,054 00530
48 98,58 00,0488 0,0498 10,0495 0,0495 00483 00484
48 102288 0,0454 10,0453 10,0453 10,0453 00451 00443
5.0 10717 0,047 0,018 0,0418 0,0418 00414 00408

In order to draw conclusions, the numerical results are plotted graphically:

7 T
| |

g || | —— Damping 5%
E | | Damping &%
= 5 4 4
E 1\ —— Damping 10%
E 4 4 | | ——Damping 15%
g i ——Damping 25%
= f fl.fﬂ" |
pr i\ — Damping 50%
§ \i
e I\
a

0 : - ' .

0 1 2 3 4 5

Frequency Ratio
Amplitude — frequency response

First of all, the resonance phenomenon is clearly visible. When the frequency ratio equals unity, the Dynamic
Magnification factor becomes very large indicating that a small harmonic load can produce a large amplitude
of vibration.

Second, the influence of the damping ratio on the system response in resonance is significant. With a damping
ratio of 5%, the magnification factor is about 10; with a damping ratio of 50%, the magnification factor is
reduced to 1.
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In general, the following can be concluded from this graphic [1]:

The system response at low frequencies is stiffness-dependent . In the region of resonance, the response is
damping-dependent and at high frequencies, the response is governed by the system mass: mass-
dependent .

It is important to keep this in mind when attempting to reduce the vibration of a structure. For example, the
application of increased damping will have little effect if the excitation and response frequencies are in a region
well away from resonance, such as that controlled by the mass of the structure.

The effect of resonance can also be illustrated in SCIA Engineer.
In the project “Harmonic_Load_1", the excitation frequency is 5 Hz. The eigenfrequency is 21.43 Hz. So this
is not in the resonance area.

To see the response in function of the frequency, we can create several load cases with other excitation
frequency. You can easily do this by copying the existing load case and changing the excitation frequency.
This is shown in the next example.

Example 10-2.esa

Another common application of a harmonic load is a structure loaded with a plunger system or a motor. Both
the reciprocating effect of the plunger and the rotating unbalance of the motor produce an exciting force of
the inertia type of the system.
For an unbalanced body of mass m, at an effective radius e, rotating at an angular speed v, the exciting
force F can be written as [1]:
F=m, e-v?

(3.13)

This is illustrated in following example.

An electric motor with a mass of 500 kg is mounted on a simply supported beam with overhang. The beam
has a cross-section type HE240A and is manufactured in S 235 according to EC-EN. The beam has a length
of 4 m and the overhang is 3 m.

The motor has an unbalance of 0,6 kgm. The damping ratio of the system is taken as 10%.

e\vt

HEA240

/1N /]

4000 1500 1500

The motor can operate at speeds of 800, 1000 and 1200 rpm. For each of these speeds, the amplitude of
forced vibration needs to be calculated to check, for example, if the vibrations induced by the motor are
acceptable.

One static load case is created: the self-weight of the beam. However, in order not to take the self-weight into
account for the dynamic calculation, the volumetric mass of S235 can be set to 1 kg/m3 in the Material Library.
This will render it easier to check the results through a manual calculation.

A node has been added to the middle of the overhang to specify the location of the motor.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionality Dynamics on the Functionality tab in
the Project Data .
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Step 2: mass group

The second step is to create a Mass Group.
%" Mass groups X

(AP 2> & FH A mRy;
MG1 Name MG1

Description

Bound to load case Yes
Load case LC1 - Dead load

Keep masses up-to-date with loads 4

Actions
Create masses from load case >5>

Delete all masses 25>

New Insert Edit Close

Step 3: masses

After the Mass Group has been created; the 500 kg mass of the motor can be inputted in the middle of the
overhang:

Step 4: mass matrix

Next, the Mass Group is put within a Combination of Mass Groups , which can be used for defining the
harmonic loads at the different speeds:

B " Combinations of mass groups X

|ﬂ3‘§£5‘§@< D& A Y/
M1 [Name M1

Description

Contents of combination
MG1 [-] 1.000

New Insert Edit Close
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Step 5: load cases definition

After creating the Mass Combination, three harmonic load cases can be defined, one for each speed.

Each load case uses the same Mass Combination and has the same damping specifications.
The damping ratio was given to be 10%. Applying formula (3.11) the logarithmic decrement

calculated:

MJA — 2024/02/29

2mé 2+m*0,10

A = =
J1-8  /1-(0,10)2
The forcing frequency is different for each load case and can be calculated from the given speeds:

2mrad 1min

Vaoo = 800rpm * * = g3,7gTad
800 P 1rev  60s /s
2mrad 1min
Viooo = 1000rpm * x = 104,72 rad
1000 p 1lrev  60s /s
2mrad 1min
V1200 = 1200rpm * x = 125,66 rad
1200 p 1lrev  60s /s
¥ " Load cases
A sBEki=» o> & - A
LC1 - Dead load [Name
LC2 - Speed 800rpm Description
LC3 - Speed 1000rpm Action type
LC4 - Speed 1200rpm Load group
Load type

Specification
Parameters
Logarithmic decrement
Frequency [Hz]
Master load case
Combination of mass groups
3D Wind

Actions

Delete all loads

Copy all loads to another loadcase

New Insert Edit Delete

= 0,631483883399

=> fsoo = 13,33HZ

=> flooo = 16,67HZ

=> flzoo = Z0,00HZ

X

- Y
LC4
Speed 1200rpm
Variable
LG2
Dynamic

Harmonic

0.631483883399
20.00

None

M1

>>>

Close

can be
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Step 6: harmonic forces

The parameters of the harmonic loads have been defined. What is left is inputting the amplitude of the three
exciting forces.

Using formula (3.13) these forces can be calculated from the forcing circular frequency and the mass
unbalance.

2
Fgo0 = My €.v3oo = 0,6kgm * (83,78 2d/5)" = 4211,03N = 4,21kN
d 2
Fio00 = M. & V000 = 0,6kgm + (104,72724/5)" = 6579,74N = 6,58kN

2
Fiz00 = M. e V500 = 0,6kgm * (125,66 ™24/s)" = 9474,82N = 9,47kN

The loads are inputted through Load > Point Force > In Node:

Step 7: mesh setup

To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined.
This can be done through Calculation & Mesh/ Mesh Settings.

B Mesh setup X
Name MeshSetup1

[iveoge rmber of 1D mesh et on st 1D members—— I )
Average size of 1D mesh element on curved 1D members [m] 0.200
Average size of 2D mesh element [m] 1.000
Connect members/nodes L4

Setup for connection of structural entities
Advanced mesh settings

ol O,
B & X

The Average number of tiles of 1D element s set to 10.
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Step 8: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this
example, only one eigenmode is required so in Calculation & Mesh / Solver Settings the number of
frequencies is set to 1.

To compare the results with a manual calculation, the shear force deformation is neglected.

8" Solver setup X

‘ Advanced solver settings

“ General
[Neglect shear force deformation (Ay, Az >> A) vl ]
Type of solver Direct E
Number of sections on average member 10
Warning when maximal translation is greater than [mm)] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
Coefficient for reinforcement 1
Nonlinearity

Initial stress

“ Dynamics
Type of eigen value solver Lanczos -
U\lumber of eigenmodes 1 j

Use IRS (Improved Reduced System) method

Method for time history analysis direct time integration -
Mass components in analysis
Stability

B & A

Step 9: modal analysis

All steps have been executed so the Linear calculation and modal analysis can be started through
Calculation, mesh > Calculation

Note: For the moment, this analysis can be launched only on the 32-bit version of SCIA Engineer and in the
“v16 and older” environment.

FE analysis et

Single analysis  Batch analysis I

Linear calculation
Montinear caleulation
Muodal analysis
Stability
Concrete - Code Dependent Deflections {COD)
Construction stage analysis
Engineering report regeneration

|:| Save project after analysis

Solver setup | Mesh setup

oK | Cancel
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This gives the following results:
Eigen frequencies

Mass combination : CM1
1 [14.15 [88.88 [7899.96 [ 0.07

The nodal deformations for the harmonic loads at the location of the motor are the following:
- At 800 rpm:

L
LAt

A

—4,86<—
-10,38<=——

- At 1000 rpm:

— 3,66
L — 783

.Y 4
AN

T
>

- At 1200 rpm:

4,93

= 2,31

o
N A

As stated in the previous example, it is important to keep in mind that the signs are not relevant since a vibration
occurs on both sides of the equilibrium position.

Manual calculation

In order to check the results of SCIA Engineer, a manual calculation is performed [15].
First, the calculated eigen frequency is checked using formula (2.3)
Using default engineering tables [11], the maximum static deformation of a simply supported beam with length
L, an overhang with length a and loaded with a load F at the end of the overhang is given as:
5 Fa?(L + a)
max — 3EI

(3.14)

= E

/N AN
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The rigidity k of this system can then be calculated:
F 3EI
k=

Smax  a(L +a)

Where:
L =4 m = 4000 mm
a=15m=1500 mm
E = 210000 N/mmz2
| = 77600000 mm#

So:

3 (210000 N/mmz) « (77600000mm*)

=3950,55 N/im = 3950545,45 N
(1500mm)? * (4000mm + 1500mm) /mm /m

Applying formula (2.3):

k  [3950545,45N/
= _—= d = rad
® m \/ 500kg 88,89 /S
So:
w
f=—=14,15Hz
TC

This result corresponds exactly to the result calculated by SCIA Engineer.

Applying formula (3.8) the frequency ratios can be calculated for each motor speed:

Voo _ 83,78Tad/

I'ggo = T = M = 0,9425
r _ Vigoo _ 104,72 rad/s - 11781
1000 =7 = 88.89 rad/s =1,
v 125,66 ad
rlzoo = 1200 _ /S = 1,4’137

w  ggggrad/,

The frequency ratios can then be used in formula (3.9) to calculate the Dynamic Magnification Factors. When
also applying formula (3.4) the Dynamic Amplitude can be calculated for each speed:

4211,03N

Faoo/ N
3950545,45
Yg00 = k = /m = 4,86mm
VA —1200)% + (2rg009)2 /(1 — 0,94252)2 + (2 * 0,9425 * 0,10)2
F1000/ 6579,74N / N
Yiggg = Kk _ 3950545,45 N/, P
VA =12000)% + 2r10008)? (1 —1,1781%)2 + (2 * 1,1781 * 0,10)2
Flm/ 9474,82N N
3950545,45
Yiz00 = k /m = 2,31mm

V(1 = r500)% + (2r10008)? - V(1 —1,41372)2 + (2 * 1,4137 % 0,10)2

These results correspond exactly to the results calculated by SCIA Engineer.
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In the same way as in the previous example, the calculation can be repeated for several angular velocities.
The result is shown graphically on the following figure:

Amplitude - Velocity Response

%] [ ] e [4,]
1 i 1 1

Forced Vibration Amplitude [mm]
1

=

T T
1000 1500 2000

g

Angular Velocity [rpm]
Amplitude — velocity response

Note:

The main feature to notice is the decrease in vibration amplitude when the forcing frequency increases due to
moving away from resonance [15].
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Chapter 11: DAMPING

In the previous chapters, the influence of damping on the dynamic response of a structure was shown.
Especially in the vicinity of resonance the effect of damping was significant.

In this chapter, damping will be looked upon in more detail. First the theory will be explained after which the
input of non-uniform damping in SCIA Engineer is regarded.

By means of the examples of the previous chapter, the influence of damping on the seismic response is
illustrated. The chapter is finished with a 3D structure, which takes into account material damping of the
different elements.

11.1.  Theory

Damping can have different causes. The component that is always present is structural damping. Structural
damping is caused by hysteresis in the material: the transfer of small amounts of energy into warmth for each
vibration cycle possibly increased by friction between internal parts.

Other causes can be the foundation soil of the building and aerodynamic damping due to the diversion of
energy by the air [22]. In many cases, damping is increased by adding artificial dampers to the structure.

In the same way as for the previous chapters, first the theory is examined. A complete overview can be found
in reference [1].

Consider the following damped free-vibrating system:

AN

A body mass m can move in one direction. A spring of constant stiffness k, which is fixed at one end, is
attached at the other end to the body. The mass is also subjected to damping with a damping capacity c.

The equation of motion , using matrix notations can be written as:

M. () + C.x(8) + K.x(t) = 0
(5.1)
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A possible solution to this equation is one of the type:

x=A.e%
(5.2)
Substituting (5.2) in (5.1) gives:
M.s?2.A.eSt + C.s.A.eSt+ KA. eSt =0
(5.3)
This equation can be rewritten as:
s2+2.ns+wi=0
(5.4)
With:
_ C
Y
(5.5)
K
W, = M
(5.6)
The possible solutions for equation (5.4) are:
s=-n+.n?—- w3
(5.7)

Itis clear that the response of the system depends on the numerical value of the radical. Therefore the following
three possibilities need to be examined:
n= w,

n < wy,

n> w,
(5.8)

These can be rewritten as:

C=2.vK.M
C<2.VvKM

C>2.VKM
(5.9)

The condition C = 2.vVK.M = C,. is called critical damping. In this case, the displaced body is restored to
equilibrium in the shortest possible time, without oscillation.

The ratio ¢ is called the damping ratio or the relative damping :

e
E—CC

Therefore, when assuming n = &. w,, equation (5.5) can be written as:

C=2.Etw,.M
(5.10)
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The three possibilities of equation (5.8) can be rewritten as:

§=1
&<
E>1
(5.11)
When looking at the conditions ¢ = 1 and ¢ > 1, it can be shown that there is no harmonic solution.
Only the condition ¢ < 1 gives a harmonic solution.
Introducing the damped circular frequency:
Wp = Wp.4/1 — 2
the solution to equation (5.1) can be written as:
x = e~%nt {A. cos(wpt) + B.sin(wpt)}
(5.12)

In chapter 2, this vibration equation was illustrated by the following figure:

~

X
~1

X, Circular frequency V(1 — t?)w = w,
M

' u ! @'—u-?_f;_:ﬁ'-‘-‘— -t
K [

4 L
T Exponential decay Xe §«?

-

-
L~

A convenient way to determine the damping in a system was shown to be the logarithmic decrement A,
which is the natural logarithm of the ratio of any two successive amplitudes in the same direction.

X 2T
A=In—0= g

X J1-2

(5.13)

Note:

As shown above, the circular frequency is reduced by the damping action to obtain the damped circular
frequency. However, in many systems this reduction is likely to be small because very small values of ¢ are
common; for example, in most engineering structures £is rarely greater than 0,02. Even if £{=0,2; ab = 0,98,

Annex B gives some references for numerical values of the damping ratio.
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11.2. Damping in SCIA Engineer

In SCIA Engineer, damping can be specified on 1D elements, 2D elements and supports. The damping of
each of these elements (or substructures) will be used to calculate a modal damping ratio for the whole
structure for each Eigenmode. In the literature this is described as Composite Damping .

Composite damping is used in partly bolted, partly welded steel constructions, mixed steel-concrete structures,
constructions on subsoil, ...

For structural systems that consist of substructures with different damping properties, the composite damping
matrix C can be obtained by an appropriate superposition of damping matrices for the individual substructures

Ci:
N
C = ch

i=1
(5.14)
With:
C;: the damping matrix for the it substructure in the global coordinate system.
N: the number of substructures being assembled.

+ Proportional Damping (Rayleigh Damping)

A way of describing the damping is assuming that the damping matrix is formed by a linear combination of the
mass and stiffness matrices.
Ci = ai'Mi + Bi' Ki
(5.15)

With:

a; and B;: proportional damping for the it part of the structure.

Mi: mass matrix for the it part of the structure in the global coordinate system.

Ki: stiffness matrix for the i" part of the structure in the global coordinate system.

Formulas for these proportional damping coefficients can be found in reference [19].
Examples can be found in reference [20].

+ Stiffness-Weighted Damping

For structures or structural systems that consist of major substructures or components with different damping
characteristics, composite modal damping values can be calculated using the elastic energy of the structure
8], [21]:
£ = iL15-E
T E
(5.16)
With:
& damping ratio of the considered eigenmode.
E: elastic energy of the structure, associated with the modal displacement of the considered
eigenmode.
N: number of all substructures.
&;: damping ratio for the i#me substructure.
Ei: elastic energy for the iéme substructure, associated with the modal displacement of the considered
eigenmode.

Equation (5.16) can be rewritten in the following way [19]:
q)JT[ P:l[EK]i]'cDj

& = 2

0

(5.17)
With:
[EK]:: stiffness matrix for the it" substructure in the global coordinate system, scaled by the modal
damping ratio of the i" substructure.

Note:

This formula may be used as long as the resulting damping values are less than 20% of critical. If values in
excess of 20% are computed, further justification is required.

MJA — 2024/02/29 155



Advanced Training — Dynamics

As specified, in SCIA Engineer on each element a damping ratio can be inputted. For this ratio, also the
damping of the material can be used from which the element is manufactured.

When no damping ratio is inputted on an element, a default value will be used since all elements need a
damping ratio before the above formulas can be applied. The input of this default will be shown in the examples.
Analogous to the input of other objects in SCIA Engineer, Damping on elements will be grouped in a Damping

Group . In turn, this Group can be assigned to a Combination of Mass Groups

4+ Support damping

Additional to the damping of 1D and 2D elements, SCIA Engineer allows the input of a damper on a flexible
nodal support. The modal damping ratio §; is calculated by the following formula:
Ej - q);l:j- [i:s Cs]- (Ds,j
(5.18)
With:
w;: the circular frequency of mode j
®;: the modal displacement in support node s for mode |
C,: the damping constant for the support
a: a user defined parameter (> 0)

The total modal damping ratio can then be calculated as the summation of equations (5.17) and (5.18).

As specified, on all 1D and 2D elements a damping ratio has to be defined. This is not the case with supports,
not every support needs to have a damping value.
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The following diagram shows how non-proportional damping is inputted in SCIA Engineer:

Activate the functionalities:
- “Dynamics”
- « Non-proportional damping »

v

Create a damping group

!

Input dampers

!

Assign the damping group to a mass combination

!

Proceed with the steps of the previous chapters.

The use of dampers and the calculation of the composite damping ratio will be illustrated in the following
examples.

Note: The damping functionality is only available o n 32-bit version of SCIA Engineer

Example 11-1.esa
In this example, the principle of stiffness-weighted damping is illustrated.

A concrete frame is modelled in which the beam is assumed to be rigid. In this case, only the columns take
part in the horizontal stiffness of the frame.

The left column has a Rectangular 500 x 500 section, the right column a Rectangular 350 x 350 section. The
column bases are modelled as rigid. To model the rigid beam, a Rectangular 500000 x 500000 section is
used. To make sure this beam acts as rigid, in the nodes between the columns and the beam, supports are
inputted which have a fixed Translation Z and Rotation Ry . The height of the columns and the length of the
beam are taken as 5m. All elements are manufactured in C30/37 according to EC-EN.

Rigid Beam

S 3 f]

5000
Column 1
Column 2

4 5000 L
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The beam is loaded by a line mass of 500 kg/m. The left column has a damping ratio of 12%, the right
column a damping ratio of 3%.

One static load case is created: the self-weight of the beam. However, in order not to take the self-weight into
account for the dynamic calculation, the volumetric mass of C30/37 can be set to 1e-10 kg/m? in the Material
Library. This low value is chosen to avoid any influence by the rigid beam.

The steps of the Free Vibration calculation are followed and extended with the input of damping.

Step 1: functionality

The first step in the Dynamic calculation is to activate the functionalities Dynamics and Non-Proportional
Damping on the Functionality tab in the Project Data .

Basic data | Functionality | Actions Unit Set Protection

General Detailed

Property modifiers |Dynami:s

Model modifiers Modal & harmonic analysis

Parametric input Seismic spectral analysis

Climatic loads Dynamic time-history analysis

Mobile loads [Non proportional damping

Stability Pad foundation check
Nonlinearity

Structural model

IFC properties

Advanced concrete checks

Prestressing

Bridge design

Excel checks

Document

Cancel

Step 2: mass group and masses

A Mass Group is created after which the line mass of 500 kg/m can be inputted on the rigid beam.
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Step 3: damping

Before creating a Combination of Mass Groups , the dampers are inputted.
=1 0% Dynamics
@ Masses
J#* Mass groups
J#* Combination of mass groups
E|[§ Damper setup
»= Dampers
J& Damping groups

| o e

First of all, a Damping Group is created.

® " Damping group X
HeBK 0> & Fd A -V
DG1 Name DG1
Description
Type of default damping Global default

As specified in the theory, on each element a damping ratio needs to be inputted. When no damper is specified,
a default value will be taken. In the properties of the Damping Group , this default can be set as either:

- « Global default »: the logarithmic decrement specified in the Damper Setup will be used.
- « Material default » : the logarithmic decrement of the material will be used.

In this example, the Global default is chosen.
After the creation of a Damping Group , Dampers can be inputted. In this example, 1D Damping shall be

inputted on the columns. The damping can be inputted in the following ways, which have been explained in
the theory:

# ' 1D damping X
Name D1D3
Relative damping
Value Logarithmic decrement

Relative damping
Rayleigh damping

2EIZ2E2Y

=
L4

Cancel
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On the left column, a Relative damping of 0,12 is inputted.
On the right column, a Relative damping of 0,03 is inputted.

[ ] [ ]
L] LIl
12% 3%
77PTI7 7,

As a final step, the general parameters can be checked through Damper Setup :

# ° Damper setup X
Global default
Base value - logarithmic decrement 0.05
Alpha factor for supports 0.5
Maximal modal damping 0.2

1 [-X ,
D () |9| Cancel

The Base value specifies the default value when a Damping Group of type Global default is chosen and no
damper is inputted on an element.

The Alpha factor is used in the damping calculation for supports as specified in the theory.

When the composite modal damping ratio is calculated, the value is checked with the Maximal modal damping
value inputted here. If the calculated value is higher than the maximal value, the maximal value is used. In this
example, the maximal value is set to 0,2 in accordance with the remark for formula (5.17)
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Step 4: mass matrix

A Combination of Mass Groups

can now be created and the Damping Group can be specified:

# ' Combinations of mass groups X
A s@BB 0= & A -1V
M1 [Name M1
Description
« C of combination
MG1[-] 1.00
Damping group DG1
New Insert Edit Delete Close
Step 5: mesh setup
To obtain precise results for the dynamic calculation, the Finite Element Mesh is refined.
This can be done through the main menu Tools / Calculation & Mesh / Mesh settings
8" Mesh setup
MeshSetup1
l Average number of 1D mesh elements on straight 1D members 10 ]
Average size of 1D mesh element on curved 1D members [m] 1.000
Average size of 2D mesh element [m] 1.000
Connect members/nodes
“ Advanced mesh settings
“ General mesh settings
Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Automatic -
Average size of panel element [m] .000
Elastic mesh
Hanging nodes for prestressing
4 1D elements
Minimal length of beam element [m] 0.100
Maximal length of beam element [m] 100.000
Average size of tendons, elements on subsoil, nonlinear soil spring [m] 1.000
Generation of nodes in connections of beam elements |

B & &

Cancel

The Average number of tiles of 1D element s set to 10.
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Step 6: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this
example, only one eigenmode is required so in the main menu Tools / Calculation & Mesh/ Solver Settings
the number of frequencies is set to 1.

To compare the results with a manual calculation, the shear force deformation is neglected.

B " Solver setup X

“ Advanced solver settings

“ General

(Neglect shear force deformation (Ay, Az >> A) v ]

Type of solver Direct -

Number of sections on average member 10

Warning when maximal translation is greater than [mm] 1000.0

Warning when maximal rotation is greater than [mrad] 100.0

Coefficient for reinforcement 1

“ Initial stress

Initial stress

< Dynamics
Type of eigen value solver Lanczos -
[Number of eigenmodes 1 ]

Use IRS (Improved Reduced System) method ‘
Mass components in analysis
“ Soil

@I g‘ ?{ Cancel

Step 7: linear calculation and calculation protocol

All steps have been executed so the Free Vibration calculation can be started through the main menu Tools
/ Calculation & Mesh / Calculate.

The following results are obtained through the Calculation Protocol for the Eigen Frequency calculation:

Sum of masses

Combination of mass groups 1 |2500.00 |0.00 [2250.00

Relative modal masses
Mode Omega Period Freq. Wxi / Wyi / Wzi / Wxi R/ Wyi R/ Wzi_R/ Damp

[rad/s] [s] [Hz] Wxtot Wytot Wztot Wxtot_ R Wytot_ R Wztot_R ratio
1 89.0864 0.0705 14.1785 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1026
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The calculated modal damping ratio is shown to be 0,1026 or 10,26%.

Step 8: manual calculation

In order to check the results of SCIA Engineer, a manual calculation is performed.
First, the calculated eigen frequency is checked using formula (2.3)
In this example, the two columns can be treated as fixed-fixed beams. Using default engineering tables [12],
each column contributes the following stiffness to the frame:
(o 128
=
(5.19)
With for column 1:
E = 32000N/mm?2
| = 5208300000mm*

L =5000mm
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And for column 2:
E = 32000N/mm?2
| = 1250500000mm#
L =5000mm

So:

* M * 5208300000mm*

= mm _
= (5000mm)?3 15999,8976N/mm

12 * M * 1250500000mm*
k, = mm(SOOOmm)3 = 3841,536N/mm

Both columns act in parallel since each column will displace the same amount due to the fact the beam is
rigid. The beam itself does not bend so it does not contribute to the stiffness.

15999,8976N  3841,536N  19841,4336N
ktOt = kl + k2 = + =

mm mm mm

The vibrating mass is calculated as:
500kg

* 5m = 2500kg

k 19841433,6N/m
w= |—= = 89,087rad/s

m 2500kg

w
f=—=14,1787Hz
2m

These results correspond exactly to the results obtained by SCIA Engineer.

Next, the stiffness-weighted damping ratio is calculated. The first column has a damping ratio of 12%, the
second column a damping ratio of 3%.
Using the elastic energy principle of formula (5.16) the modal damping ratio can be calculated as follows:
e bkt ik
ktot

(0,12 +15999,8976N/mm) + (0,03 * 3841,536N/mm)
&= 19841,4336N/mm

§=0,1026 = 10,26%

This result corresponds exactly to the result obtained by SCIA Engineer.
The modal damping ratio can now be used to calculate the Damping Coefficient in a seismic calculation. This

will be illustrated in the following examples.
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Example 11-2.esa

In this example, non-proportional damping is accounted for in a seismic calculation using the SRSS modal
combination method. To this end, the example (04-2) from the previous chapter is extended with dampers.
More specifically, a relative damping of 12%, 3% and 8% is inputted on the three columns starting from the
base of the structure.

Step 1: functionality

The first step to take into account the damping is to activate the functionality Non-Proportional Damping on
the Functionality tab in the Project Data .

Step 2: damping group

The second step is the creation of a Damping Group .

8" Damping group X
A v & - A |V
DG1 Name DG1

Description

Type of default damping Global default

Since a damper will be inputted on all elements, the choice of the default damping type is not relevant.

Step 3: dampers

After the creation of a Damping Group , Dampers can be inputted. A relative damping of 12%, 3% and 8% is
inputted on the three columns starting from the base of the structure:

B7

12%
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Step 4: mass matrix

As a final step, the Damping Group is assigned to the Mass Combination:

# " Combinations of mass groups X
At 0= & A BRY;
M1 [Name M1
Description
Contents of combination
MG1 [-] 1.00
Damping group DG1

Step 5: linear calculation and calculation protocol

The non-proportional damping has now been inputted so the Linear Calculation can be re-done to see the
Seismic results.

The following results are obtained through the Calculation protocol of the Linear Calculation :

Dynamic loadcase: 2 :LC2

Mode Freq. DET T Sax Say Saz G(j) Fx Fy Mx My
[Hz] ratio Damp | coe [m/s?] [m/s?] [m/s?] [kN] [kN] [kNm] [kNm]
1 0.5253 0.0996 0.8176 0.1650 0.0000 0.0000 0.5001 0.1799 0.0000 0.0000 -1.7990
2 3.4262 0.0711 0.9086 0.3980 0.0000 0.0000 0.0154 0.1287 0.0000 0.0000 -0.3717
Level= 0.00 0.22 0.00 0.00 1.84

For both eigenmodes the Composite Modal Damping Ratio is calculated using equation (5.17).

As specified in the previous chapter, this Damping Ratio will be used to calculate the Damping Coefficient
which influences the spectral accelerations. Using equation (4.13):

_ 10
M= 1(5+9,96)

= 19 _ 9087
2= 5+ 71) "

As expected, since the modal damping ratios are higher than the default 5% used in the acceleration spectrum,
they will have a positive effect thus lowering the response of the structure.

=0,8176

More specifically, for the first eigenmode only 81,7% of the spectral acceleration will be taken into account and
for the second eigenmode 90,8%.

The spectral accelerations of the original example without damping can thus be multiplied by n :
Sax,) = 0,2019 m/s2 * 0,8176 = 0,1651 m/s?
Sax,2) = 0,4380 m/s2 * 0,9087 = 0,3980 m/s?

These adapted spectral accelerations will thus influence the mode coefficients, the base shear, the overturning
moment, the nodal displacements and accelerations,...
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Example 11-3.esa :

In this example, non-proportional damping is accounted for in a seismic calculation using the CQC modal
combination method. To this end, the example Spectral_Analysis_3 .esa from the previous chapter is
extended with dampers.

More specifically, a relative damping of 2%, 5% and 2% is inputted on the three columns starting from the base
of the structure.

As seen in the theory and the original example, the CQC method required the definition of a Damping
Spectrum . This damping spectrum was used for the calculation of the Modal Cross Correlation Coefficients
and to calculate the Damping Coefficient for each mode.

When however Non-Proportional Damping is used, the calculated Composite Modal Damping Ratios are used
instead of the data of the Damping Spectrum. This is illustrated in this example.

Step 1: functionality

The first step to take into account the damping is to activate the functionality Non-Proportional Damping on
the Functionality tab in the Project Data .

Step 2: damping group

The second step is the creation of a Damping Group :

# " Damping group X
ﬂ 3‘§ ! 9 "‘_‘ é ﬁ u All v \‘U'?
DG1 Name DG1

Description

Type of default damping Global default

Since a damper will be inputted on all elements, the choice of the default damping type is not relevant.
Step 3: dampers
After the creation of a Damping Group , Dampers can be inputted. A

relative damping of 2%, 5% and 2% is inputted on the three columns
starting from the base of the structure:

Ln
o

ha
ol

166 MJA — 2024/02/29



Step 4: mass matrix

As a final step, the Damping Group is assigned to the Mass Combination:
# " Combinations of mass groups X
AHeBEk o & A MR

M1 [Name M1
Description

Contents of combination
MG1[-] 1.00
Damping group DG1

New Insert Edit Close

Step 5: linear calculation and calculation protocol

The non-proportional damping has now been inputted so the Linear Calculation can be re-done to see the
Seismic results.

The following results are obtained through the Calculation protocol of the Linear Calculation :

Dynamic loadcase: 2 :LC2

Mode Freq. DETT Sax Say Saz G(j) Fx Fy Mx My
[Hz] ratio Damp | coe [m/s?] [m/s?] [m/s?] [kN] [kN] [kNm] [kNm]
i 0.5253 0.0265 1.1432 0.2307 0.0000 0.0000 0.6993 0.2516 0.0000 0.0000 -2.5154
2 3.4262 0.0330 1.0979 0.4809 0.0000 0.0000 0.0187 0.1556 0.0000 0.0000 -0.4491
Level= 0.00 0.30 0.00 0.00 2.56

In the original example, a Damping Spectrum with a constant damping ratio of 2% was used. Due to the
inputted dampers, the calculated Composite Modal Damping Ratios of 2,64% and 3,30% are now used.

Using equation (4.13) the Damping Coefficients can be calculated:

= 10 1432
M= I5+265 "

= 10 _ 10976
2= [5+330) "

As was the case in the original example, the damping ratios are lower than the default 5% used in the
acceleration spectrum, they will have a negative effect thus augmenting the response of the structure.

Since the calculated damping ratios are higher than the original 2%, the response will be less when compared
to the original example.

Second, the calculated Composite Modal Damping Ratios will be used for the calculation of the Modal Cross
Correlation Coefficients of the CQC-method .

This will be illustrated in a manual calculation.
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Step 6: manual calculation

In this paragraph, the application of the CQC-method using the calculated Composite Modal Damping Ratios
is illustrated for the global response of the Base Shear.

Mode 1:
ey = 3,3007rad/s
F(1y = 0,2701kN

Mode 2:
W) = 21,5192rad/s

Using a spreadsheet, the Modal Cross Correlation Coefficients p;; are calculated with a damping ratio §;; of
2,64% for the first eigenmode and 3,30% for the second eigenmode.

Mode 1 2
1 1 0,00055202
2 0,00055202 1
N N
Rior = Z Ri)-pij-Rg)
i=1 j=1

R | (0.2701kN « 1+ 0,2701kN) + (0,2701kN * 0,00055202 = 0,1629kN)
tot = 14(0,1629kN * 0,00055202 * 0,2701kN) + (0,1629kN x 1 x 0,1875kN)

Ryt = 0,315kN

The difference between these Correlation Coefficients and the original is very small which was to be expected
since the calculated damping ratios are close to the original 2%.
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Example 11-4.esa

In this example, a seismic analysis is carried out on a storage depot. The layout of the structure is given in the
pictures below. The depot is constructed with steel members manufactured of S235 according to EC-EN. On

the upper roof, a steel shell is used with thickness 20 mm.

On each floor level, concrete slabs are used with thickness 200 mm. The slabs are manufactured in C25/30

according to EC-EN.
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The diagonals are hinged in both directions. The column bases are also hinged though the anchors are
spaced such that the rotation around the Z-axis is taken as fixed .

The steel members of the depot have following cross-sections:
- Columns: IPE300
- Floor beams: HE200A
- Roof beams: IPE160
- Diagonals: L(ARC) 40x40x4

The vertical loads acting on the structure are:
- Load case 1: the self-weight of the depot
- Load case 2: a category E (storage) imposed load of 5 kN/m2 on all floor slabs.

The structure will be subjected to an earthquake loading in both X, Y and Z direction, using a Design Response
Spectrum according to Eurocode 8 for Ground Type A with a behaviour factor of 1,5. This means that the
spectrum for the internal forces will be divided by this value. The acceleration coefficient is 0,50.

For the dynamic calculation, the structural damping of the depot is taken into account. More specifically, a
logarithmic decrement  of 0,025 is used for steel and 0,056 for concrete [22].

Step 1: functionality

The first step to take into account the damping is to activate the functionality Non-Proportional Damping on
the Functionality tab in the Project Data .

Step 2: mass group and masses

The second step is to create Mass Groups and then the creation of Masses.
Since the self-weight is automatically taken into account in a Combination of Mass Groups , only one Mass
Group is created here, a group to take the mass of the imposed load into account.
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Using the action “Create masses from load case” automatically generates masses from the already inputted

loads.

# ' Mass groups

 AMEmemEk o> & - A

MG1 Name MG1
Description
Bound to load case Yes
Load case

Keep masses up-to-date with loads

Actions
Create masses from load case

Delete all masses

New Insert Edit

LC2 - Imposed Load (Storage)

X

Step 3: damping groups

Before creating a Combination of Mass Groups , the damping is specified.

First of all, a Damping Group is created.
¥ " Damping group

Aok 2> S - A

DG1 Name

DG1

Description

Type of default damping

Material default

Since, in this example, the structural damping of the steel and concrete is taken into account, the Type of
default damping is set to Material default . This way, when no damper is inputted on an element, the default

damping value of the material will be used.

The damping values can be specified in the Material Library:

8" Materials
AhaesenBk o9 @l ~ -V
€25/30 [Name | c2s/30
$235 Code independent
Material type Concrete
Thermal expansion [m/mK] 0.00
Unit mass [kg/m*3] 2500.0
Density in fresh state [kg/m*3] 2600.0
E modulus [MPa] 31000.00
Poisson coeff. 0.2
Independent G modulus
G modulus [MPa] 12916.67
[Log. decrement (non-uniform dampi... 0.056 ]
Colour —— 1
Specific heat [J/gK] 6.0000e-01
Thermal conductivity [W/mK] 4.5000e+01
Order in code -
Price per unit [€/m*3] 1.00
EN 1992-1-1
Characteristic compressive cylinder st... 25.00
Calculated depended values
Mean compressive strength fcm(28) ... 33.00
fem(28) - fck(28) [MPa] 8.00
Mean tensile strength fctm(28) [MPa]  2.60
fctk 0,05(28) [MPa] 1.80
frtl 0 QS/2R) IMPal 330
New Insert Edit Close

For the concrete, a logarithmic decrement of 0,056 is inputted, for the steel a value of 0,025.
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Step 4: mass matrix

The Mass Group and Damping Group can now be combined in a Combination of Mass Groups.

As specified in formula (2.9) all gravity loads appearing in the following combination of actions need to be
taken into account for an eigenmode calculation:

D Gt ) Wi Qg

For this example, with a Category E imposed load, ¢ is taken as 1,0 and y»z;ias 0,8.
This gives a value of 0,8 for Yk,

Since the self-weight is automatically taken into account, the Combination of Mass Groups CM1 can be
formulated as 0,80 MG1.:

B Combinations of mass groups X
Aireoe@BE > & A -V

M1 [Name M1

Description

Contents of combination
MG1[-] 0.80
Damping group DG1

New Insert Edit Close

As a final step, the Damping Group is assigned to the Combination of Mass Groups.
Step 5: seismic spectrum

Before creating the seismic load cases, the seismic spectrum needs to be defined through the main menu
Library / Seismic spectrums

Instead of inputting a spectrum manually, the spectrum according to EC8 is chosen. In this example, the
spectrum for Ground Type A with a Behaviour Factor g = 1,5 is used for all directions:

, B Code parameters X

ag - design accelera... 1.000
q - behaviour factor  1.500
o4 beta 0.200
: S, Tb, Tc, Td manuall... No - mm:mm
E A )
— Subsoil type = =
= I Spectrum type type 2 - o
Direction Horizontal
Frequency[Hz] Direction factor
1 |0.00 1 S - soil factor EC8-h
£l 02 -l Period
3 |0 R [ Tc 0.250
4 |07 1 ™ 1.200 EN 1998-1:2004 - Eurocode
Sl 1 1 Nate NA not sunnorted
: 30.00 Hz
7 |15 d -
8 |17 0.57 0.73
9 |2 0.50 0.83 Code parameters
10 | 2.2 44 0.94
1 4 1.04 v Cancel

172 MJA — 2024/02/29



Step 6: seismic load case

The Seismic load cases can now be defined through the workstation “Load cases”
For the Seismic load case in the X-direction , the following parameters are used:

The Coefficient of Acceleration

|Name | LC3
Description Seismic X
Action type Variable -
Load group LG3 -
Load type Dynamic -
Specification Seismicity -
< Parameters
“ Direction X
Direction X v
Response spectrum X EC8-h - B
Factor X 1
* Direction Y
Direction Y
Direction Z
Direction Z
Acceleration factor 0.5
Overturning reference level [m] 0.000
‘ Equivalent lateral forces
ELF method Disabled -
« Accidental eccentricity
Method Disabled -
‘ Modal superposition
Type of superposition cQc -
Damping spectrum [dela} v
“ Multiple eigenshapes
Unify eigenshapes
“ Mode filtering
Mode filtering Disabled -
Mass in analysis Participating mass only -
* Signed results
Predominant mode
Master load case None -
Combination of mass groups M1 -

Stage for composite analysis model

Final stage, short term

, and “Load Cases”

is set to 0,5. As Type of evaluation the CQC-method is used.

In exactly the same way, the Seismic load cases in the Y and Z-direction are defined:

[Name |Lca
Description Seismic Y
Action type Variable
Load group LG3 - =
Load type Dynamic
Specification Seismicity
< Parameters
“ Direction X
Direction X
“ Direction Y
Direction Y &
Response spectrum Y EC8-h - B
Factor Y 1
“ Direction Z
Direction Z
Acceleration factor 0.5
Overturning reference level [m] 0.000
“ Equivalent lateral forces
ELF method Disabled
« Accidental eccentricity
Method Disabled
“ Modal superposition
Type of superposition cac -
Damping spectrum cQct - B
“ Multiple eigenshapes
Unify eigenshapes
* Mode filtering
Mode filtering Disabled
Mass in analysis Participating mass only -
« Signed results
Predominant mode
Master load case None
Combination of mass groups M1

Stage for composite analysis model
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Final stage, short term

|Name | LGS

Description Seismic Z

Action type Variable

Load group LG3 v =

Load type Dynamic -

Specification Seismicity

« Parameters

Direction X
Direction X

“ Direction Y
Direction Y

“ Direction Z
Direction Z !
Response spectrum Z EC8-v - B
FactorZ 1

Acceleration factor 0.5
Overturning reference level [m] 0.000

“ Equivalent lateral forces
ELF method Disabled

“ Accidental eccentricity
Method Disabled -

“ Modal superposition
Type of superposition cac -
Damping spectrum cact -
Multiple eigenshapes
Unify eigenshapes

 Mode filtering
Mode filtering Disabled -

Mass in analysis
“ Signed results
Predominant mode
Master load case
Combination of mass groups

Stage for composite analysis model

Participating mass only

None v
M1 -

Final stage, short term
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This steps have to be repeated for load cases that define the deformations (behaviour factor q is different).

Notes:

For the load case Seismic Z a new spectrum has to be defined with type vertical.

Three other EN-Seismic load cases have to be defined, the first 3 are for internal forces and 3 new (with g-
behaviour factor set to 1) for deformation. Each group of load cases has to get a load group with type “seismic”
& “together” and they must be placed in separate combinations.

According to Eurocode 8 [7] the action effects due to the combination of the horizontal components of the
seismic action may be computed using the following combinations:
Egax"+"0,3. Eggy" + "0,3. Egq,
0,3.Egax"+"Egqy"” + "0,3. Eggs
0,3.Egax"+"0,3. Eggy" + "Egay
Where:
« + » implies « to be combined with ».

Eeax represents the action effects due to the application of the seismic action along the chosen
horizontal axis x of the structure.

Eeay represents the action effects due to the application of the seismic action along the chosen
horizontal axis y of the structure.

Eedz represents the action effects due to the application of the seismic action along the chosen
horizontal axis z of the structure.

First of all, this implies that all Load cases must always be considered together in a combination. In SCIA
Engineer this can be done by putting both Seismic Load cases in a Load Group with relation Together .

# ° Load groups X
AiAaeBi o= & FE & -1V
LG1 Name LG3
LG2 Relation Together
LG3 Load Seismic
New Insert Edit Close

Next, the combination for the Seismic calculation can be inputted. According to Eurocode 8 [7] this combination

is the following:
D Gt P Apat ) b Qg

Where Aeq represents the accidental action, which is in this case the combined seismic action.

(5.22)

In SCIA Engineer, the EN-seismic type can be used for this purpose.
To fulfil the conditions of the Eurocode, 6 load combinations of this type are created:
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# " Combinations
Ais 2B ) * &  Input combinations v
col-f [Name o1
coz-f Description f
co3-f Type EN-Seismic
Co4-d Structure Building
€03-d Active coefficients v
s « Contents of combination
LC1 - Self-Weight [-] 1.00
LC2 - Imposed Load (Storage) [-] 1.00
LC3 - Seismic X [-] 1.00
LC4 - Seismic Y [-] 0.30
LC5 - Seismic Z [-] 0.30
Actions
Explode to envelopes >35>
Explode to linear >35>
Show Decomposed EN combinations >>>
‘ New Insert Edit Delete Close

To be able to see the global extremum for the two combinations, two Results classes can be used:
X

B " Result classes

‘ HLBE 2= & A BRY;
seism-f |Name seism-f
seism-d Description
“ List

CO1 - EN-Seismic
CO2 - EN-Seismic
CO3 - EN-Seismic

|

[ New Insert Edit Delete

Close

Step 7: mesh setup

To obtain precise results, the Finite Element Mesh is refined through the main menu Tools / Calculation &

Mesh / Mesh Settings . The Average number of tiles of 1D element
element is set to 0,25m.

8" Mesh setup
Average number of 1D mesh elements on straight 1D members 10
Average size of 1D mesh element on curved 1D members [m] 0.250
[Average size of 2D mesh element [m] 0.250 ]

Connect members/nodes
“ Advanced mesh settings
“ General mesh settings

Minimal distance between definition point and line [m] 0.001
Definition of mesh element size for panels Automatic
Average size of panel element [m] 1.000
Elastic mesh
Hanging nodes for prestressing

“ 1D elements
Minimal length of beam element [m] 0.100
Maximal length of beam element [m] 100.000

Average size of tendons, elements on subsoil, nonlinear soil spring [m]  1.000

1 'g‘x F{

X
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is set to 10; the Average size of 2D
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Step 8: solver setup

The last step before launching the calculation is setting the amount of eigenmodes to be calculated. For this
example, five eigenmodes are chosen.
In the main menu Tools / Calculation & Mesh /  Solver Settings, the number of frequencies is thus set to 5.

B Solver setup X
Name SolverSetup1
“ Advanced solver settings
“ General
Neglect shear force deformation ( Ay, Az >> A)
Bending theory of plate/shell analysis Mindlin -
Type of solver Direct -
Number of sections on average member 10
Warning when maximal translation is greater than [mm)] 1000.0
Warning when maximal rotation is greater than [mrad] 100.0
Coefficient for reinforcement L

Effective width of plate ribs
Initial stress
“ Dynamics

Type of eigen value solver Lanczos -

\ ' Number of eigenmodes 5 ]

Use IRS (Improved Reduced System) method

Mass components in analysis

B‘ l9'll F{ Cancel

Step 9: linear calculation and calculation protocol

All steps have been executed so the Linear Calculation can be started through the main menu Tools /
Calculation & Mesh / Calculate.

The Calculation Protocol for the Eigen Frequency calculation shows the following:

Mode Omega Period Freq. Wxi / Wyi / Wzi / Wxi R/ WyiR/ Wzi_R/ Damp

[rad/s] [s] [Hz] Wxtot Wytot Wztot Wxtot_ R Wytot_ R Wztot_R ratio
4,5955 1.3672 0.7314 0.9686 0.0000 0.0000 0.0000 0.0103 0.0000 0.0081
11.4189 0.5502 1.8174 0.0000 0.6682 0.0000 0.0190 0.0000 0.2860 0.0080
13.6430 0.4605 2.1713 0.0271 0.0000 0.0002 0.0000 0.3694 0.0000 0.0081
13.8204 0.4546 2.1996 0.0000 0.2709 0.0000 0.0003 0.0000 0.5272 0.0080
14,9368 0.4207 2.3773 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0080

0.9957 0.9391 0.0002 0.0193 0.3797 0.8136

L (WIN |-

It can be seen that for both horizontal directions more than 90% of the total mass is taken into account in these
five modes so it is concluded that sufficient Eigenmodes have been calculated.

Through Deformation of nodes under 2D Members, the Deformed Mesh can be used to visualize the first
four Eigenmodes:
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i, f’ = 3 IFlj

Eigenmode 1: f = 0,73Hz Eigenmode 2: f = 1,82Hz

i 1

Eigenmode 3: f=2,17Hz Eigenmode 4:_f =2,20Hz

The Calculation Protocol for the Linear calculation shows the results of the seismic calculation:

Dynamic loadcase: 3 :LC3

Mode Freq. Damp Sax Say Saz G(j) Fx Fy Mx My
[Hz] ratio Damp|coe [m/s?2] [m/s?] [m/s?] [kN] [kN] [kNm] [kNm]
1 0.7314 0.0081 1.3114 0.1809 0.0000 0.0000 4.4128 48.0082 0.0000 -0.0000
-302.1145
2 1.8174 0.0080 1.3134 0.4978 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000
> 21713 0.0081 1.3123 0.5940 0.0000 0.0000 -0.2748 4.4051 0.0000 -0.0000 42.6000
4 2.1996 0.0080 1.3131 0.6021 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000
5 2.3773 0.0080 1.3135 0.6508 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000
Level= 0.00 48.21 0.00 0.00 305.10

Dynamic loadcase: 4 :LC4

Mode Freq. DETT Sax Say Saz G(j) Fx Fy Mx My
[Hz] ratio Damp | coe [m/s?] [m/s?] [m/s?] [kN] [kN] [kNm] [kNm]
1 0.7314 0.0081 1.3114 0.0000 0.1809 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000
2 1.8174 0.0080 1.3134 0.0000 0.4978 0.0000 -1.6335 -0.0000 91.1291 0.0000
-609.0984
3 21713 0.0081 1.3123 0.0000 0.5940 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000
4 2.1996 0.0080 1.3131 0.0000 0.6021 0.0000 0.8587 0.0000 44,6772 -0.0000
-254.8292
5 2.3773 0.0080 1.3135 0.0000 0.6508 0.0000 0.0100 0.0000 0.0076 -0.0387 -0.0000
Level= 0.00 0.00 101.77 661.88 0.00

For each Eigenmode the Composite Damping Ratio has been calculated using the structural damping of the
steel and concrete.

The combinations can now be used to verify the structural elements.
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Chapter 12: DIRECT TIME INTEGRATION

12.1. Theory

The title may be misleading because normally in the literature, this name is used for a dynamic computation
without modal superposition. In SCIA Engineer, the eigenmodes are determined first and are used to uncouple
the equilibrium equations into a set of m uncoupled second order differential equations which are solved one
by one by direct time integration. The uncoupling is based on the properties given by equations.

O . M.®; =0 sii# j

I MP; =1 sii=j
O M. ®; = wf

In equation (3.1), a solution for y is assumed to be of the form:

y=¢.Q
(7.1)
Where ¢ is the matrix of eigenvectors (n*n) and Q is a vector which is time dependant.
Substitution in equation (3.1) gives:
M.$.Q+C.$d.Q+Kp.Q=F
(7.2)

When the equation is pre-multiplied with ¢ and the above equations are taken into account, one obtains:
Q+¢T.C.d.Q+0%.Q=¢".F
(7.3)

This set of equations is still coupled because of the damping term. If however C-orthogonality is assumed (this

means that ¢T.C.¢ reduces to only diagonal terms), then the equations are uncoupled and can be
solved separately. The global results are obtained by superposition of the individual results (7.1) is also the
exact solution if the assumption of C-orthogonality holds. If however, only a few eigenvectors (m<n) are used

in ¢ instead of all the eigenvectors, then the system of equations and the superposition of the solutions gives
a solution y which is an approximation of the exact solution.
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In SCIA Engineer, C-orthogonality is assumed and it is also assumed that all modal damping factors are
constant. This means that:
(7.4)

The value of & is one of the input data and is called damping factor.

The number of eigenvectors that is taken into account is also specified by the user. This value is equal to the
number of eigenvectors computed in the eigenvalue computation.

The method used to solve each uncoupled second order differential equation is the Newmark-method. This
method is unconditionally stable but the accuracy depends on the time step. This time step has to be given by
the user. However, to help him in his choice, a value determined by the program will be used if the user does
not specify a value. This proposed value is computed as: 0,01 T

Where T smallest period of all the modes which have to be taken into account

This proposed value guarantees accuracy better than 1% over each period of integration of this highest mode.
In most cases, a larger time step can be used because the contribution of this last mode is small.

This brings us to the question about the number of modes that should be used. When the time dependent
terms on the left hand side of equation (7.3) are neglected, the solution for gj (a term of Q) is:

]
(7.5)

This indicates that the lowest eigenmodes (w; small) will contribute more than the highest modes (w; large), if
dynamic terms are neglected. This can give a first idea on how many modes to use.

A second criterion is the periodicity of F. Any mode which coincides with the loading frequency should be taken
into account.

Modal weight is a third criterion that can be used. If you add all modal weights in a particular direction together
and divides this result by 9.81*sum of nodal masses in the same direction, you obtain a value smaller than 1.
If this value is close to 1, it means that the higher modes will not contribute anymore. If, on the contrary, the
value is smaller than 0,9, one can doubt about the value of a subsequent modal superposition.
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12.2. Direct-Time Integration in SCIA Engineer

In SCIA Engineer, it's possible to input a dynamic function. This can be used for different purposes, for
example: harmonic loads, explosions, ... In this case, the user has to input a dynamic function which presents
the frequency in function of the time.

The following diagram shows the different steps which have to be performed for the time history calculation:

Activate the functionalities “Dynamics”
and « Dynamic time-history analysis »

v

Create a mass group

—

Input masses Generate masses from static load cases

~ -

Create a mass combination

!

Define a « Time » load function

!

Create a « Time » load case

!

Refine the Finite-Element mesh is required

!

Specify the number of Eigenmodes to be calculated

!

Perform a linear calculation

This functionality is only available in 32-bit vers ion of SCIA Engineer!
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Example 12-1.esa

In this example an explosion is simulated on a concrete plate.

The plate has a dimension of 6x6 m and the thickness is 300 mm. The plate will be calculated according to the
EC-EN and is made of concrete grade C30/37. The four corners are supported by hinged supports.

Three load cases are introduced:
- Self weight
- Permanent surface load: -4 kN/m?
- Variable point load: blast of -11 kN

Step 1: functionality

In the “Project settings”, activate the options « Dynamics » and « Dynamic time-history analysis »:
Project data

Basic data | Functionality | Actions Unit Set Protection

General Detailed

Property modifiers ] N |Dynamics

Model modifiers Modal & harmonic analysis
Parametric input Seismic spectral analysis

Climatic loads Dynamic time-history analysis v,
Mobile loads Non proportional damping

Coalbailie.. Call imbmvnrdbina

Step 2: mass groups and masses

Open the menu ‘Dynamics’ and a mass group will be created here. For this, the permanent surface load of
-4 KN/m2 is used. For this, you can click on the ‘create masses from load case’ button.

8 ' Mass groups X

AilheBi 2o & @E A By,
MG ' Name MG1

Description

Bound to load case Yes -
Load case BG2 - Permanent v

Keep masses up-to-date with loads v

Actions

Create masses from load case >>> ]

Delete all masses S>>

New Insert Edit t Close

A surface mass of 407,7 kg/m? is created.
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Step 3: mass matrix

Next, a combination of mass groups can be created:

B ° Combinations of mass groups

‘ﬂ?é!%@-{ & A

M1 IName

CcM1

Description

Contents of combination

MG1 [-]

New Insert Edit

1.00

Close

Step 4: dynamic load function

After the creation of masses, the explosion can be simulated by means of a dynamic load function

Go to ‘Libraries > Loads > Dynamic load functions’.
Here you can input the input of load coefficients in function in time.
Two types of functions can be input, namely a base and/or modal function. If both are introduced, the user can
choose if these functions have to be multiplied or summarized.
4 types of functions can be chosen: constant, linear, parabolic or sinusoidal.

In our example a modal function is created with linear lines:

Dynamic Load Function

§ COMPOSED,
4 Q q I3og
][I
E :é I\U&mo
_ FUNCTION 1
§ HHHHHIH .
i e
-0 -0.6200
FUNCTION 2 t[s]
0

X
Name Composttion type
DLF1 Multiply e Sum
Function 1
type delta t [s] f1 f2 f3 shift
1 |lin ~ 0.050 0.000 0.000 0 0.000
2 lin - 0.078 1.000 0000  0.00C 0.000
3 lin ~ 0.024 0.000 -0.620 0.000
4 lin - 0.048 -0.620 0.000 0 0.000 0
* lin - 0.000 0.000 0.000 0.000 0.000 0.000
Function 2
type delta t [s] f1 f2 f3 shift F [Hz]
* | const v 0.000 0.000 0.000 0.000 0.000 0.000

This function has to be attributed to a point load. We will do this in step 6.
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Step 5: a “general dynamics” load case

A load case is introduced to simulate this explosion.
The action type is « Variable » and the type of load « Dynamic ».

B Load cases X
AEeseBEKI 2> & R ~ -1V
BG2 - Permanent Description Explosion
BG3 - Explosion Action type Variable v
Load group LG3 v B
Load type Dynamic -
Specification General dynamics v
Parameters
Total time [s] 1.51
Auto integration step v
Output step [s] 0.30
Logarithmic decrement 0.16
Master load case None v
Combination of mass groups (@)} v
Actions
Delete all loads >>>
Copy all loads to another loadcase >>>
New Insert Edit Delete Close

For the load group, the user can choose a special case, namely « Accidental »:

# ° Load groups X
e o> - A ] Y/

LG1 Name LG3

LG2 Relation Exclusive

LG3 Load Accidental

New Insert Edit Close

Next, the specification has to be selected and the type General dynamics has to be chosen for a time history
calculation.

For this, we need some extra parameters:
- « Total time » : The total time of the dynamic analysis.
- « Integration step » : When “Auto” is checked, then 1/100 of the smallest period is taken. When “Auto”
is not checked, then the user is allowed to select an integration step value.
- « Output step » : Step for generating the load cases. The value need to be bigger or equal at the
integration step.
- « Log Decrement » : Damping defined as logarithmic decrement.

MJA — 2024/02/29 183



Advanced Training — Dynamics

Step 6: input of loads which follow the load combin

ation

In this step, you will create of a nodal force. Only nodal forces can be linked to a dynamic function.
The value of the nodal force, will be multiplied with the coefficients in the function to achieve the final force in
function of time.

A point force of -11 kN is input in the middle of the plate. The user has the option to attribute the dynamic
function DLF1 to this load.

® ' Point force in node

F Direction z
Type Force
Angle [deg]
Value - F [kN] -11.00
Function DLF1
‘ Geometry
Fx @ @ System GCS
Fy
Fz

Cancel

Step 7: mesh setup

Before the calculation, the mesh is refined to get precise results.

184

Mesh setup

Average number of 1D mesh elements on straight 1D members
Average size of 1D mesh element on curved 1D members [m]
Average size of 2D mesh element [m]
Connect members/nodes

‘ Advanced mesh settings

General mesh settings

Minimal distance between definition point and line [m]
Definition of mesh element size for panels

Average size of panel element [m]

Elastic mesh

Hanging nodes for prestressing

4 1D elements

Minimal length of beam element [m]
Maximal length of beam element [m]
Average size of tendons, elements on subsoil, nonlinear soil spring [m]

Generation of nodes in connections of beam elements

B & &

MeshSetup1

1
0.200
0.200

0.001
Automatic

.000

0.100
100.000
1.000
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Step 8: linear calculation
Now, the linear calculation can be performed.
When the calculation is finished, new load cases are created which present the influence of the blast on the

structure on each output step (the output time must always be smaller than ‘Total time’, so in this example, we
used 1,51 s as total time to get an output at 1,50 s):

' Load cases X
AP sBEI» o> & FHE & - [
BG1 - Dead Load [Name BG3
BG2 - Permanent Description Explosion
BG3 - Explosion Action type Variable -
BG3.0 - 0.00/1.51 Load group LG3 S
BG3.1-0.30/1.51 Load type Dynamic i
a2 - ML) Specification General dynamics -
BG3.3 - 0.90/1.51
BG3.4 - 1.20/1.51 (i Esmmctees
BG3.5 - 1.50/1.51 Total time [s] 1.51
Auto integration step v
Output step [s] 0.30
Logarithmic decrement 0.16
Master load case None -
Combination of mass groups M1 -

To find the most extreme result, there load cases can be input in a Result class.
Step 9: results

The eigen frequencies are shown in the “Results” menu:

Eigen frequencies
N f (0} w? T

[Hz] [1/s] [1/s?] [s]
Mass combination : CM1
1 7.96 50.00 2500.06 0.13

2 17.98 112,95 |12757.03 | 0.06
3 17.98 112,95 |12757.07 | 0.06
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Other results, like for example deformations, can be regarded for the different output steps:
- After 0,3 seconds:

T
E
N
2
N
K14 3
- After 0,6 seconds:
T
£
0.000 e
3
0.010 N
-0.020 0
-0.030
-0.040
-0.050 =
-0.060
-0.070
-0.080
-0.090
-0.100
-0.116
- After 0,9 seconds:
i
£
0.000 =
3
-0.000 i
K14 =}
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- After 1,2 seconds:

0.058
0.052
0.048
0.044
0.040
0.036
0.032
0.028
0.024
0.020
0.016
0.012
0.008
0.004
0.000

Uz/uz[mm]

- After 1,5 seconds:

0.000
-0.004
-0.008
-0.012
-0.016
-0.020
-0.024
-0.028
-0.032
-0.036
-0.040
-0.044
-0.048
-0.052
-0.057

Uz/uz[mm]
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Or we can ask the result for the class which has been generated for the load cases.

¥ " Result classes X
A eBEK 2> & A m v/
RC1 Name RC1
BG3 - Explosion Description
New Insert Edit Delete Close
Displacement of nodes (1) v \ﬁ v >7
S
K14 Name Displacement of no...
Selection Current -
Type of loads Class -
K13 Class BG3 - Explosion ~ ..
Values Uz -
Text output Graph -
Extreme Node -
12
If you choose refresh, then you can see Uz for each 0,3 seconds in the selected node.
Displacement of nodes
Linear calculation, Extreme : Node
Class : BG3
Uz [mm]
0.250 o
0.200 4
0.150 \
0.100 ; \
0.050 \ - Minimum
-0.050 Pl b ™S
-0.100
-0.150,
= - o m 3 w
o o m ™ o o D
B B B B B 2
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If we would set the output step to 0,01 s in the dynamics load case, then you would get 150 load cases.

’ # Load cases

X

AHeBKI 0o & BE A

- Y

BG1 - Dead Load A | |Name

BG2 - Permanent Description

BG3 - Explosion Action type

BG3.0 - 0.00/1.51 Load group

BG3.1-0.01/1.51 Load type

BG3.2 - 0.02/1.51 I
Specification

BG3.3 - 0.03/1.51

BG3.4 - 0.04/151 QEE s

BG3.5 - 0.05/1.51 Total time [s]

BG3.6 - 0.06/1.51 Auto integration step

BG3.7 - 0.07/1.51 Output step [s]

BG3.8 - 0.08/1.51 Logarithmic decrement
BG3.9 - 0.09/1.51 Master load case
BG3.10-0.10/1.51 Combination of mass groups

BG3.11-0.11/1.51
BG3.12- 0.12/1.51
BG3.13- 0.13/1.51
BG3.14 - 0.14/1.51
BG3.15- 0.15/1.51 Ace=a
BG3.16 - 0.16/1.51
BG3.17 - 0.17/1.51

D72 10 N 1071 81

Delete all loads

v | Copy all loads to another loadcase

New Insert Edit Delete

BG3

Explosion
Variable

LG3

Dynamic

General dynamics

1.51
vl
0.01
0.16
None
M1

25>

22>

{ Close ‘

And as a result, the “deformation in nodes” graph would give more detailed representation:

Displacement of nodes
Linear calculation, Extreme : Node

Class : BG3
Uz [mm]
0.400_
0300 033
1
OZSE*
0200 }% ﬂ »?gf,
%#— |+| I+||| J‘ﬂ glfﬁl' 137 -
- # ’ I | | -‘[ Jl ] fl'r '+JT' CIJY “F\ 0L ooy Minimum
|JTJrI|* L 44 T I 4% 71 "8 e

0.000 sy, |l Lllﬁiif‘ﬁ’lw%ii*%%gﬁjﬁx Maximum

0l | l I 1 + 4 ! +.“’1 Y
-0.100 1 T | |I Jlgf *Il 'I *4‘. lrfL '*W{i.w}* L# N

e
I% f‘ #| f 1, o147 0133
-0200, lﬂ |- If %j g
A N W 0210

- i 0248
-0300) << 0322

E : g g Z E G g 0

& g 2 g B g z z
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Example 12-2.esa

In this example a running load over a bar is simulated:

N
T‘T v V N2 y N3 y N4 Y V5 V6 VN7 J NE y V9 V V10 NI
LN Pa

The beam has a length of 20 m and a section HE200A. The beam will be calculated according to the EC-EN
and is made of steel S 235. The edges are supported by hinged supports.

Two load cases are introduced:
- Self weight
- Variable dynamic load: point loads of -100 kN on every 2 m over the beam

Step 1: functionality

In the “Project settings”, activate the options « Dynamics » and « Dynamic time-history analysis ».

Step 2: mass groups

Open the menu ‘Dynamics’ and a mass group will be created here. For this, no mass is inputted. Only the self
weight is taken into account.

Step 3: mass matrix

Next, a combination of mass groups can be created.

B " Combinations of mass groups X
HBisBk ©2= & A -V
cMm1 [Name M1

Description

Contents of combination
MG1 [-] 1.00

Step 4: dynamic load functions
After the creation of masses, the running load can be simulated by means of dynamic load functions
In the menu Library / Loads / Dynamic load functions, the input of frequencies in function in time is asked.

Two types of functions can be input, namely a base and/or modal function. If both are introduced, the user
can choose if these functions have to be multiplied or summarized.
4 types of functions can be chosen: constant, linear, parabolic or sinusoidal.

In this example 9 modal functions are created with linear lines:
- DLF1is 1,00 from 0,2s to 0,4s
- DLF2is 1,00 from 0,4s to 0,6s
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B " Dynamic Load Functions X

AieBi 2> & W A mRy;
DLF1 -
DLF2
DLF3
COMPOSED
DLF4 1.0 1.00
DLF5 0.8
=~ = 0.6
Name IDLF3 04
Compositi... sum - 0.2
il 0.0
FUNCTION 1
1.0 ) ‘1.00
0.8
0.6
04
| 0.2
{ 0.0
JNCTION 2 t [s]
0
= - - I =
o o = o o o =) o
New Insert Edit Close

Each function will be attributed to a different point load (cf step 6):
- DLF1 to the first point load from the left.
- DLF2 to the second point load from the left.

These 9 load functions will be used to simulate the effect of a point load moving from left to right over a time
period is simulated. On each point (every 2m) the point load stays for a time of 0.20sec. So it takes 2 seconds
for the point load to cross the whole beam.
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Step 5: general dynamics load case

A load case is introduced to simulate this running load.
The action type is Variable and the type of load Dynamic

For the load group, the user can choose a special case, namely Accidental.

# " Load groups X
BlaeoeBik o &R ~ m Ry,
LG1 Name LG2
LG2 Relation Exclusive
Load Accidental

Next, the specification has to be selected and the type General dynamics has to be chosen for a time history
calculation. After choosing general dynamics, some extra parameters have to be defined.

- Total time [s] : The total time of the dynamic analysis.

- Integration step : When “Auto” is checked, then 1/100 of the smallest period is taken. When “Auto”
isn't checked, then the user is allowed to select an integration step value.

- Output step [s] : The step is used to determine on which points in time results must be generated.
These will be saved in new generated load cases.

- Log Decrement : Damping defined as logarithmic decrement.

192

B Load cases X
A BRI 0o & - & |V
LC1 - Poids propre [Name |Lcs
LC3 - Dynamique Description Dynamique
Action type Variable
Load group LG2
Load type Dynamic
Specification General dynamics
Parameters
Total time [s] 2.50
Auto integration step v
Output step [s] 0.03
Logarithmic decrement 0.05
Master load case None
Combination of mass groups v -

New Insert

Edit

Actions
Delete all loads

Copy all loads to another loadcase

Delete
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Step 6: input of loads

In this step, nodal forces will be inputted. Dynamic load functions can only be linked to nodal forces. Since
they are ‘nodal’ forces, the user must provide internal nodes to place these internal forces on. Every 2 m an
internal node has to be created on the beam. On each of these nodes a point force of -100 kN is set. The first
point force from the left is linked to DLF1, the second to DLF2,...

This models the movement a single point load over the beam left to right over the beam in a total time of 2 sec.

8 ° Point force in node X
E‘ F Direction z
Type Force
/ Angle [deg]

@ Value - F [kN] -100.00

Function DLF9 v =
Fx Geometry
@ System GCS

Fz T
L@

Step 7: linear calculation

Now, the calculation can be performed.
When the calculation is finished, new load cases are created which present each output step:

"' Load cases X

Al eBEki» 0o & - & -V

LC1 - Poids propre || [Name |Le3

LC3 - Dynamique Description Dynamique

LC3.0 - 0.00/2.50 Action type Variable -

LG3.1-0.03/2.50 Load group LG2 -

LC3.2 - 0.05/2.50 = S -

e Specification General dynamics -

LC3.4 - 0.10/2.50

LC3.5- 0.13/2.50 Parsmercters

LC3.6 - 0.15/2.5 Total time [s] 2.50

LC3.7 - 0.18/2.50 Auto integration step v

LC3.8 - 0.20/2.50 Output step [s] 0.03

LC3.9 - 0.23/2.50 Logarithmic decrement 0.05

LC3.10 - 0.25/2.50 Master load case None -

LC3.11 - 0.28/2.50 Combination of mass groups m -

LC3.12 - 0.30/2.50

LC3.13 - 0.33/2.50

LC3.14 - 0.35/2.50

LC3.15 - 0.38/2.50

LC3.16 - 0.40/2.50 s

ch‘” i 04%{3'50 Delete all loads >>>

}Eij? ’ 2‘::32 v | Copy all loads to another loadcase >5>
New Insert Edit Delete Close
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To find the most extreme result, these load cases are automatically input in a result class:

¥ ' Result classes

A eBEK 2= & A

LC3 [Name | Lc3
Description
< List

ol I~ N =gl ol B =l B o B 4
OIOIOIOIOIOIO
Yo s WS oo

—
[ 6]

—
[a]

,_
(a)
o

[ el I =
Ol0n

W

-
[

—
[a]
RS

1=

10

vl [ Bl R [l Rt [ o=
Jg O -b

r—
(8]
W oW W W W w W W W W W W W W W W W w

,_
0
=
~

LC3.18
LC3.19
10220

New Insert Edit Delete

Close

Step 8: results

The eigen frequencies are shown in the results menu:
Eigen frequencies
N f ® ?

[Hz] [1/s] [1/s?]
Mass combination : CM1

T
[s]

1 [5.03 |31.62 [999.93 0.20
2 |19.78 [124.28 ]15445.22 0.05
3 143.18 [271.31 |73608.14 0.02
4 |64.59 |405.79 |164668.49 | 0.02

194

MJA — 2024/02/29



Other results, like for example deformations, can be regarded for the different output steps:
- After 0,5 second:

N

v N2 N3 N4 N5 N6 N7 N8 NG NIO  NI1

W‘“”B

L
T}
00
|
- After 1 second:
N
v N2 N3 N4 N5 N6 N7 NE N9 NI10O N17T
W A
M
|
- After 1,5 seconds:
N
v N2 N3 N4 N5 N6 N7 NE NG NI10 N17T
v
(&)
T}
|
- After 2 seconds:
N
T‘L\u\ v N2 N3 N4 N5 NE N7 N8 N9 NI10 N17
©
ﬁ.
|
- After 2,4 seconds:
N
T‘IM\ v N2 N3 N4 N5 N6 N7 N8 N9 NI0O N17

-19.9

- The result class shows the envelope of all possible results over time:

N

dm

N2 N3 1 z N9 N10 N11

-105.0 mm
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It is also possible to see the result in a certain point for all load cases in one picture. By this it is possible to
see the result over the time.

Consider for instance the vertical displacement of the middle node N6.

Properties v O X
Displacement of nodes (1) v \b V 7
g ®
Name Déplacement des noeuds
Selection Current v
Type of loads Class -
Class LC3 v
Values Uz .
Text output Graph -
Extreme Node -

The deformation of the middle node in function of the time is shown in the result preview:

Displacement of nodes
Linear calculation, Extreme : Node

Class : LC3
Uz [mm]
200
s 14754 ﬁ.
004 & f +‘ ol ;'f. *1 /
v A 2 L& . S | + #
200l% 7 | f‘y T'ﬁ {1 j‘: Tﬁ'v BET AR - A :‘ MoOooM M
' 2 A T N Y L Y R T A
44 # + 1 ‘ [ | | # [ }L [ 1 / 24
.a00}336" il e BER PL#;
i ! f # T }‘ f |‘ ] % I[ [ 7
| \ A4
ol AL
39" JI i | ]‘ I ‘[ [] 1\ J[LF
-800, T R
J
6.5 17\' Jlrf 1
-100.0] 'i‘ \—-85.9
1007 ¥
1200
F T 8§ § ¥ § ¥ § § % 0
= & ! = < - = & = ]

his result clearly represents the vibration of the middle point over time.
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